Qiu, Chunping und Liebel, Lukas und Hughes, Lloyd H. und Schmitt, Michael und Körner, Marco und Zhu, Xiao Xiang (2022) Multi-task Learning for Human Settlement Extent Regression and Local Climate Zone Classification. IEEE Geoscience and Remote Sensing Letters, 19, Seite 1000705. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2020.3037246. ISSN 1545-598X.
PDF
- Verlagsversion (veröffentlichte Fassung)
4MB |
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/9269372
Kurzfassung
Human settlement extent (HSE) and local climate zone (LCZ) maps are both essential sources, e.g., for sustainable urban development and Urban Heat Island (UHI) studies. Remote sensing (RS)- and deep learning (DL)-based classification approaches play a significant role by providing the potential for global mapping. However, most of the efforts only focus on one of the two schemes, usually on a specific scale. This leads to unnecessary redundancies since the learned features could be leveraged for both of these related tasks. In this letter, the concept of multitask learning (MTL) is introduced to HSE regression and LCZ classification for the first time. We propose an MTL framework and develop an end-to-end convolutional neural network (CNN), which consists of a backbone network for shared feature learning, attention modules for task-specific feature learning, and a weighting strategy for balancing the two tasks. We additionally propose to exploit HSE predictions as a prior for LCZ classification to enhance the accuracy. The MTL approach was extensively tested with Sentinel-2 data of 13 cities across the world. The results demonstrate that the framework is able to provide a competitive solution for both tasks.
elib-URL des Eintrags: | https://elib.dlr.de/138487/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | Multi-task Learning for Human Settlement Extent Regression and Local Climate Zone Classification | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | Januar 2022 | ||||||||||||||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
Band: | 19 | ||||||||||||||||||||||||||||
DOI: | 10.1109/LGRS.2020.3037246 | ||||||||||||||||||||||||||||
Seitenbereich: | Seite 1000705 | ||||||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | human settlement mapping, remote sensing, climate zone classification | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||
Hinterlegt von: | Bratasanu, Ion-Dragos | ||||||||||||||||||||||||||||
Hinterlegt am: | 26 Nov 2020 17:39 | ||||||||||||||||||||||||||||
Letzte Änderung: | 19 Okt 2023 13:49 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags