Qiu, Chunping and Gamba, Paolo and Schmitt, Michael and Zhu, Xiao Xiang (2020) Learning from Noisy Samples for Man-made Impervious Surface Mapping. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-3, pp. 787-794. ISPRS 2020, 2020-08-31 - 2020-09-02, online. doi: 10.5194/isprs-annals-V-3-2020-787-2020. ISSN 2194-9042.
PDF
21MB |
Official URL: https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-3-2020/787/2020/
Abstract
Man-made impervious surfaces, indicating the human footprint on Earth, are an environmental concern because it leads to a chain of events that modifies urban air and water resources. To better map man-made impervious surfaces in any region of interest (ROI), we propose a framework for learning to map impervious areas in any ROIs from Sentinel-2 images with noisy reference data, using a pre-trained fully convolutional network (FCN). The FCN is first trained with reference data only available in Europe, which is able to provide reasonable mapping results even in areas outside of Europe. The proposed framework, aiming to achieve an improvement over the preliminary predictions for a specific ROI, consists of two steps: noisy training data pre-processing and model fine-tuning with robust loss functions. The framework is validated over four test areas located in different continents with a measurable improvement over several baseline results. It has been shown that a better impervious mapping result can be achieved through a simple fine-tuning with noisy training data, and label updating through robust loss functions allows to further enhance the performances. In addition, by analyzing and comparing the mapping results to baselines, it can be highlighted that the improvement is mainly coming from a decreased omission error. This study can also provide insights for similar tasks, such as large-scale land cover/land use classification when accurate reference data is not available for training.
Item URL in elib: | https://elib.dlr.de/138485/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Learning from Noisy Samples for Man-made Impervious Surface Mapping | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | August 2020 | ||||||||||||||||||||
Journal or Publication Title: | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | V-3 | ||||||||||||||||||||
DOI: | 10.5194/isprs-annals-V-3-2020-787-2020 | ||||||||||||||||||||
Page Range: | pp. 787-794 | ||||||||||||||||||||
ISSN: | 2194-9042 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | remote sensing, man-made, impervious surface mapping | ||||||||||||||||||||
Event Title: | ISPRS 2020 | ||||||||||||||||||||
Event Location: | online | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 31 August 2020 | ||||||||||||||||||||
Event End Date: | 2 September 2020 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Bratasanu, Ion-Dragos | ||||||||||||||||||||
Deposited On: | 26 Nov 2020 17:10 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:40 |
Repository Staff Only: item control page