Qiu, Chunping und Gamba, Paolo und Schmitt, Michael und Zhu, Xiao Xiang (2020) Learning from Noisy Samples for Man-made Impervious Surface Mapping. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-3, Seiten 787-794. ISPRS 2020, 2020-08-31 - 2020-09-02, online. doi: 10.5194/isprs-annals-V-3-2020-787-2020. ISSN 2194-9042.
PDF
21MB |
Offizielle URL: https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-3-2020/787/2020/
Kurzfassung
Man-made impervious surfaces, indicating the human footprint on Earth, are an environmental concern because it leads to a chain of events that modifies urban air and water resources. To better map man-made impervious surfaces in any region of interest (ROI), we propose a framework for learning to map impervious areas in any ROIs from Sentinel-2 images with noisy reference data, using a pre-trained fully convolutional network (FCN). The FCN is first trained with reference data only available in Europe, which is able to provide reasonable mapping results even in areas outside of Europe. The proposed framework, aiming to achieve an improvement over the preliminary predictions for a specific ROI, consists of two steps: noisy training data pre-processing and model fine-tuning with robust loss functions. The framework is validated over four test areas located in different continents with a measurable improvement over several baseline results. It has been shown that a better impervious mapping result can be achieved through a simple fine-tuning with noisy training data, and label updating through robust loss functions allows to further enhance the performances. In addition, by analyzing and comparing the mapping results to baselines, it can be highlighted that the improvement is mainly coming from a decreased omission error. This study can also provide insights for similar tasks, such as large-scale land cover/land use classification when accurate reference data is not available for training.
elib-URL des Eintrags: | https://elib.dlr.de/138485/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Learning from Noisy Samples for Man-made Impervious Surface Mapping | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | August 2020 | ||||||||||||||||||||
Erschienen in: | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | V-3 | ||||||||||||||||||||
DOI: | 10.5194/isprs-annals-V-3-2020-787-2020 | ||||||||||||||||||||
Seitenbereich: | Seiten 787-794 | ||||||||||||||||||||
ISSN: | 2194-9042 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | remote sensing, man-made, impervious surface mapping | ||||||||||||||||||||
Veranstaltungstitel: | ISPRS 2020 | ||||||||||||||||||||
Veranstaltungsort: | online | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 31 August 2020 | ||||||||||||||||||||
Veranstaltungsende: | 2 September 2020 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Bratasanu, Ion-Dragos | ||||||||||||||||||||
Hinterlegt am: | 26 Nov 2020 17:10 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags