Huang, Zhongling and Datcu, Mihai and Pan, Zongxu and Lei, Bin (2020) A Hybrid and Explainable Deep Learning Framework for SAR Images. In: 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020, pp. 1-4. IGARSS 2020, 2020-09-26 - 2020-10-02, online. doi: 10.1109/igarss39084.2020.9323845. ISBN 978-172816374-1. ISSN 2153-6996.
Full text not available from this repository.
Official URL: https://igarss2020.org/view_paper.php?PaperNum=1670
Abstract
Deep learning based patch-wise Synthetic Aperture Radar (SAR) image classification usually requires a large number of labeled data for training. Aiming at understanding SAR images with very limited annotation and taking full advantage of complex-valued SAR data, this paper proposes a general and practical framework for quad-, dual-, and single-polarized SAR data. In this framework, two important elements are taken into consideration: image representation and physical scattering properties. Firstly, a convolutional neural network is applied for SAR image representation. Based on time-frequency analysis and polarimetric decomposition, the scattering labels are extracted from complex SAR data with unsupervised deep learning. Then, a bag of scattering topics for a patch is obtained via topic modeling. By assuming that the generated scattering topics can be regarded as the abstract attributes of SAR images, we propose a soft constraint between scattering topics and image representations to refine the network. Finally, a classifier for land cover and land use semantic labels can be learned with only a few annotated samples. The framework is hybrid for the combination of deep neural network and explainable approaches. Experiments are conducted on Gaofen-3 complex SAR data and the results demonstrate the effectiveness of our proposed framework.
Item URL in elib: | https://elib.dlr.de/138255/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | A Hybrid and Explainable Deep Learning Framework for SAR Images | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | September 2020 | ||||||||||||||||||||
Journal or Publication Title: | 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
DOI: | 10.1109/igarss39084.2020.9323845 | ||||||||||||||||||||
Page Range: | pp. 1-4 | ||||||||||||||||||||
ISSN: | 2153-6996 | ||||||||||||||||||||
ISBN: | 978-172816374-1 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Complex-valued SAR Data, Patch-wise Classification, Deep Learning, Physical Scattering Properties, Topic Modeling | ||||||||||||||||||||
Event Title: | IGARSS 2020 | ||||||||||||||||||||
Event Location: | online | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 26 September 2020 | ||||||||||||||||||||
Event End Date: | 2 October 2020 | ||||||||||||||||||||
Organizer: | IEEE | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Yao, Wei | ||||||||||||||||||||
Deposited On: | 26 Nov 2020 16:21 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:40 |
Repository Staff Only: item control page