Huang, Zhongling und Datcu, Mihai und Pan, Zongxu und Lei, Bin (2020) A Hybrid and Explainable Deep Learning Framework for SAR Images. In: 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020, Seiten 1-4. IGARSS 2020, 2020-09-26 - 2020-10-02, online. doi: 10.1109/igarss39084.2020.9323845. ISBN 978-172816374-1. ISSN 2153-6996.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://igarss2020.org/view_paper.php?PaperNum=1670
Kurzfassung
Deep learning based patch-wise Synthetic Aperture Radar (SAR) image classification usually requires a large number of labeled data for training. Aiming at understanding SAR images with very limited annotation and taking full advantage of complex-valued SAR data, this paper proposes a general and practical framework for quad-, dual-, and single-polarized SAR data. In this framework, two important elements are taken into consideration: image representation and physical scattering properties. Firstly, a convolutional neural network is applied for SAR image representation. Based on time-frequency analysis and polarimetric decomposition, the scattering labels are extracted from complex SAR data with unsupervised deep learning. Then, a bag of scattering topics for a patch is obtained via topic modeling. By assuming that the generated scattering topics can be regarded as the abstract attributes of SAR images, we propose a soft constraint between scattering topics and image representations to refine the network. Finally, a classifier for land cover and land use semantic labels can be learned with only a few annotated samples. The framework is hybrid for the combination of deep neural network and explainable approaches. Experiments are conducted on Gaofen-3 complex SAR data and the results demonstrate the effectiveness of our proposed framework.
elib-URL des Eintrags: | https://elib.dlr.de/138255/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | A Hybrid and Explainable Deep Learning Framework for SAR Images | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | September 2020 | ||||||||||||||||||||
Erschienen in: | 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1109/igarss39084.2020.9323845 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||||||
ISSN: | 2153-6996 | ||||||||||||||||||||
ISBN: | 978-172816374-1 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Complex-valued SAR Data, Patch-wise Classification, Deep Learning, Physical Scattering Properties, Topic Modeling | ||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2020 | ||||||||||||||||||||
Veranstaltungsort: | online | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 26 September 2020 | ||||||||||||||||||||
Veranstaltungsende: | 2 Oktober 2020 | ||||||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Yao, Wei | ||||||||||||||||||||
Hinterlegt am: | 26 Nov 2020 16:21 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags