Calota, Iulia and Faur, Daniela and Datcu, Mihai (2020) DNN-Based, Semantic Extraction: Fast Learning from Multispectral Signatures. In: 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020, pp. 1-4. IGARSS 2020, 2020-09-26 - 2020-10-02, online. doi: 10.1109/IGARSS39084.2020.9323350. ISBN 978-172816374-1. ISSN 2153-6996.
Full text not available from this repository.
Abstract
In this paper, we present three methods that reduce the computational time of training Deep Neural Networks with multispectral images, optimize the resource occupation of the dataset, and obtain high performance for reduced datasets. In the first two methods, we reduce the dimension of the input data with either histograms of pixel intensity or Bag-of-Words. Then we train a Convolutional Neural Network with either histograms or Bag-of-Words and we achieve an accelerated training. Moreover, storing the image patches from the dataset in the form of histograms or Bagof-Words reduced the memory storage significantly. In the last method, we subsample the training dataset randomly to 50%, 20% and 10% of the original dataset, thus training a Convolutional Neural Network on a smaller number of samples (in the form of histograms or Bag-of-Words), and the classification performance is almost unaffected. This is an important achievement, as there are few labelled datasets for Earth Observation and the number of images in these datasets is small. Our results show that the training time is reduced by a maximum of 387 times and the datasets with histograms or Bag-of-Words occupy 633 times less space.
Item URL in elib: | https://elib.dlr.de/138253/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | DNN-Based, Semantic Extraction: Fast Learning from Multispectral Signatures | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | September 2020 | ||||||||||||||||
Journal or Publication Title: | 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | No | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
DOI: | 10.1109/IGARSS39084.2020.9323350 | ||||||||||||||||
Page Range: | pp. 1-4 | ||||||||||||||||
ISSN: | 2153-6996 | ||||||||||||||||
ISBN: | 978-172816374-1 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Convolutional Neural Network, Bag-ofWords, Fast training, Histogram of pixel intensity, Multispectral data | ||||||||||||||||
Event Title: | IGARSS 2020 | ||||||||||||||||
Event Location: | online | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 26 September 2020 | ||||||||||||||||
Event End Date: | 2 October 2020 | ||||||||||||||||
Organizer: | IEEE | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Yao, Wei | ||||||||||||||||
Deposited On: | 26 Nov 2020 16:17 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:40 |
Repository Staff Only: item control page