Wu, Xin and Li, Wei and Hong, Danfeng and Tian, Jiaojiao and Tao, Ran and Du, Qian (2020) Vehicle detection of multi-source remote sensing data using active fine-tuning network. ISPRS Journal of Photogrammetry and Remote Sensing, 167, pp. 39-53. Elsevier. doi: 10.1016/j.isprsjprs.2020.06.016. ISSN 0924-2716.
PDF
- Preprint version (submitted draft)
7MB |
Official URL: https://www.sciencedirect.com/science/article/abs/pii/S092427162030174X
Abstract
Vehicle detection in remote sensing images has attracted increasing interest in recent years. However, its detection ability is limited due to lack of well-annotated samples, especially in densely crowded scenes. Furthermore, since a list of remotely sensed data sources is available, efficient exploitation of useful information from multi-source data for better vehicle detection is challenging. To solve the above issues, a multi-source active fine-tuning vehicle detection (Ms-AFt) framework is proposed, which integrates transfer learning, segmentation, and active classification into a unified framework for auto-labeling and detection. The proposed Ms-AFt employs a fine-tuning network to firstly generate a vehicle training set from an unlabeled dataset. To cope with the diversity of vehicle categories, a multi-source based segmentation branch is then designed to construct additional candidate object sets. The separation of high quality vehicles is realized by a designed attentive classifications network. Finally, all three branches are combined to achieve vehicle detection. Extensive experimental results conducted on two open ISPRS benchmark datasets, namely the Vaihingen village and Potsdam city datasets, demonstrate the superiority and effectiveness of the proposed Ms-AFt for vehicle detection. In addition, the generalization ability of Ms-AFt in dense remote sensing scenes is further verified on stereo aerial imagery of a large camping site.
Item URL in elib: | https://elib.dlr.de/138248/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||
Title: | Vehicle detection of multi-source remote sensing data using active fine-tuning network | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | June 2020 | ||||||||||||||||||||||||||||
Journal or Publication Title: | ISPRS Journal of Photogrammetry and Remote Sensing | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||
Volume: | 167 | ||||||||||||||||||||||||||||
DOI: | 10.1016/j.isprsjprs.2020.06.016 | ||||||||||||||||||||||||||||
Page Range: | pp. 39-53 | ||||||||||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||||||||||
Series Name: | Elsevier | ||||||||||||||||||||||||||||
ISSN: | 0924-2716 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | Multi-source Vehicle detection Optical remote sensing imagery Fine-tuning Segmentation Active classification network | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Transport | ||||||||||||||||||||||||||||
HGF - Program Themes: | Road Transport | ||||||||||||||||||||||||||||
DLR - Research area: | Transport | ||||||||||||||||||||||||||||
DLR - Program: | V ST Straßenverkehr | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | V - NGC KoFiF (old) | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > Photogrammetry and Image Analysis Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||
Deposited By: | Reinartz, Prof. Dr.. Peter | ||||||||||||||||||||||||||||
Deposited On: | 26 Nov 2020 15:33 | ||||||||||||||||||||||||||||
Last Modified: | 28 Mar 2023 23:57 |
Repository Staff Only: item control page