elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Load Control for Unsteady Gusts with Control Surfaces using the Linear Frequency Domain

Seidler, Ruben Bernhard und Widhalm, Markus und Wild, Jochen (2020) Load Control for Unsteady Gusts with Control Surfaces using the Linear Frequency Domain. In: AIAA Aviation 2020 Forum. AIAA Aviation 2020 Forum, 15.-19. Juni 2020, Virtual Event. doi: 10.2514/6.2020-2670. ISBN 978-162410598-2.

[img] PDF
961kB

Kurzfassung

A method is presented, that is able to mitigate gust loads on an airfoil induced by an incoming gust velocity field. It thereby computes the lift coefficient response to a specified arbitrary gust velocity profile and predicts the required time-accurate control surface deflection. The method uses the linear frequency domain solver to predict frequency responses for the gust and control surface derivative of the lift coefficient efficiently. The frequency responses are computed and then subsequently filled as samples into a surrogate model. For a new flight condition the surrogate model predicts the frequency response by mere interpolation. Because the aerodynamic response on the gust and the behavior of the control surface are known, the aerodynamic lift response and the required flap deflection for alleviation can both be predicted from a given gust velocity field. The method is thereby able to predict the aerodynamic response and a time-accurate deflection for any flight condition in the design space within milliseconds. Results of the method are shown and analyzed on a 2D profile of a transonic airfoil with an implemented plain flap. The parameter studies were made in low speed with variation of Mach number, Reynolds number, angle of attack, flap chord size and initial flap deflection. In comparison to unsteady Reynoldsaveraged Navier-Stokes computations, the presented method can predict the aerodynamic responses with the same accuracy and it saves more than 6 orders of magnitude in computation time. Using the linear frequency domain solver it is also able to predict the arising unsteady aerodynamic behavior and still cover the viscous effects in the flow.

elib-URL des Eintrags:https://elib.dlr.de/138188/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Load Control for Unsteady Gusts with Control Surfaces using the Linear Frequency Domain
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Seidler, Ruben BernhardRuben.Seidler (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Widhalm, MarkusMarkus.Widhalm (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wild, JochenJochen.Wild (at) dlr.dehttps://orcid.org/0000-0002-2303-3214NICHT SPEZIFIZIERT
Datum:8 Juni 2020
Erschienen in:AIAA Aviation 2020 Forum
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.2514/6.2020-2670
ISBN:978-162410598-2
Status:veröffentlicht
Stichwörter:Load alleviation, Unsteady aerodynamics, Gust, Control surfaces, Linear Frequency Domain, Surrogate modeling,
Veranstaltungstitel:AIAA Aviation 2020 Forum
Veranstaltungsort:Virtual Event
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:15.-19. Juni 2020
Veranstalter :AIAA
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Flugzeuge
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Aircraft Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Flugphysik (alt), L - Simulation und Validierung (alt)
Standort: Braunschweig
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik
Institut für Aerodynamik und Strömungstechnik > Transportflugzeuge
Institut für Aerodynamik und Strömungstechnik > C²A²S²E - Center for Computer Applications in AeroSpace Science and Engineering
Hinterlegt von: Seidler, Ruben Bernhard
Hinterlegt am:26 Nov 2020 07:24
Letzte Änderung:10 Jun 2021 03:00

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.