Dumitru, Corneliu Octavian and Schwarz, Gottfried and Dax, Gabriel and Vlad, Andrei and Ao, Dongyang and Datcu, Mihai (2020) Active and Machine Learning for Earth Observation Image Analysis with Traditional and Innovative Approaches. In: Principles of Data Science Transactions on Computational Science and Computational Intelligence. Springer Nature Switzerland AG. pp. 207-231. doi: 10.1007/978-3-030-43981-1_10. ISSN ISSN 2569-7072.
Full text not available from this repository.
Official URL: https://link.springer.com/book/10.1007/978-3-030-43981-1
Abstract
We demonstrate how established applications and tools for image classification and change detection can profit from advanced information theory together with automated quality control strategies. As a typical example, we deal with the task of coastline detection in satellite images; here, rapid and correct image interpretation is of utmost importance for riskless shipping and accurate event monitoring. If we combine current machine learning algorithms with new approaches, we can see how current deep learning concepts can still be enhanced. Here, information theory paves the way towards interesting innovative solutions. The validation of the proposed methods will be demonstrated on two target areas: the first one is the Danube Delta, which is the second largest river delta in Europe and is the best preserved one on the continent. Since 1991, the Danube Delta has been inscribed on the UNESCO World Heritage List due do its biological uniqueness. The second one is Belgica Bank in the north-east of Greenland which is an area of extensive fast land-locked ice that is ideal for monitoring seasonal variations of the ice cover and icebergs.
Item URL in elib: | https://elib.dlr.de/138139/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Book Section | ||||||||||||||||||||||||||||
Title: | Active and Machine Learning for Earth Observation Image Analysis with Traditional and Innovative Approaches | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | 2020 | ||||||||||||||||||||||||||||
Journal or Publication Title: | Principles of Data Science | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||
DOI: | 10.1007/978-3-030-43981-1_10 | ||||||||||||||||||||||||||||
Page Range: | pp. 207-231 | ||||||||||||||||||||||||||||
Editors: |
| ||||||||||||||||||||||||||||
Publisher: | Springer Nature Switzerland AG | ||||||||||||||||||||||||||||
Series Name: | Transactions on Computational Science and Computational Intelligence | ||||||||||||||||||||||||||||
ISSN: | ISSN 2569-7072 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | machine learning, coastline detection, icebergs, sea-ice | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||
Deposited By: | Dumitru, Corneliu Octavian | ||||||||||||||||||||||||||||
Deposited On: | 27 Nov 2020 15:28 | ||||||||||||||||||||||||||||
Last Modified: | 03 Aug 2023 07:54 |
Repository Staff Only: item control page