Dumitru, Corneliu Octavian und Schwarz, Gottfried und Dax, Gabriel und Vlad, Andrei und Ao, Dongyang und Datcu, Mihai (2020) Active and Machine Learning for Earth Observation Image Analysis with Traditional and Innovative Approaches. In: Principles of Data Science Transactions on Computational Science and Computational Intelligence. Springer Nature Switzerland AG. Seiten 207-231. doi: 10.1007/978-3-030-43981-1_10. ISSN ISSN 2569-7072.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://link.springer.com/book/10.1007/978-3-030-43981-1
Kurzfassung
We demonstrate how established applications and tools for image classification and change detection can profit from advanced information theory together with automated quality control strategies. As a typical example, we deal with the task of coastline detection in satellite images; here, rapid and correct image interpretation is of utmost importance for riskless shipping and accurate event monitoring. If we combine current machine learning algorithms with new approaches, we can see how current deep learning concepts can still be enhanced. Here, information theory paves the way towards interesting innovative solutions. The validation of the proposed methods will be demonstrated on two target areas: the first one is the Danube Delta, which is the second largest river delta in Europe and is the best preserved one on the continent. Since 1991, the Danube Delta has been inscribed on the UNESCO World Heritage List due do its biological uniqueness. The second one is Belgica Bank in the north-east of Greenland which is an area of extensive fast land-locked ice that is ideal for monitoring seasonal variations of the ice cover and icebergs.
elib-URL des Eintrags: | https://elib.dlr.de/138139/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Beitrag in einem Lehr- oder Fachbuch | ||||||||||||||||||||||||||||
Titel: | Active and Machine Learning for Earth Observation Image Analysis with Traditional and Innovative Approaches | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 2020 | ||||||||||||||||||||||||||||
Erschienen in: | Principles of Data Science | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
DOI: | 10.1007/978-3-030-43981-1_10 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 207-231 | ||||||||||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||||||||||
Verlag: | Springer Nature Switzerland AG | ||||||||||||||||||||||||||||
Name der Reihe: | Transactions on Computational Science and Computational Intelligence | ||||||||||||||||||||||||||||
ISSN: | ISSN 2569-7072 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | machine learning, coastline detection, icebergs, sea-ice | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||
Hinterlegt von: | Dumitru, Corneliu Octavian | ||||||||||||||||||||||||||||
Hinterlegt am: | 27 Nov 2020 15:28 | ||||||||||||||||||||||||||||
Letzte Änderung: | 03 Aug 2023 07:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags