Dumitru, Corneliu Octavian and Schwarz, Gottfried and Pulak-Siwiec, Anna and Kulawik, Bartosz and Albughdadi, Mohanad and Lorenzo, Jose and Datcu, Mihai (2020) Understanding satellite images: a data mining module for Sentinel images. Big Earth Data, pp. 1-42. Taylor & Francis. doi: 10.1080/20964471.2020.1820168. ISSN 2096-4471.
PDF
- Published version
42MB |
Official URL: https://www.tandfonline.com/doi/full/10.1080/20964471.2020.1820168
Abstract
The increased number of free and open Sentinel satellite images has led to new applications of these data. Among them is the systematic classification of land cover/use types based on patterns of settlements or agriculture recorded by these images, in particular, the identification and quantification of their temporal changes. In this paper, we will present guidelines and practical examples of how to obtain rapid and reliable image patch labelling results and their validation based on data mining techniques for detecting these temporal changes, and presenting these as classification maps and/or statistical analytics. This represents a new systematic validation approach for semantic image content verification. We will focus on a number of different scenarios proposed by the user community using Sentinel data. From a large number of potential use cases, we selected three main cases, namely forest monitoring, flood monitoring, and macro-economics/urban monitoring.
Item URL in elib: | https://elib.dlr.de/138138/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||||||
Title: | Understanding satellite images: a data mining module for Sentinel images | ||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||
Date: | 21 October 2020 | ||||||||||||||||||||||||||||||||
Journal or Publication Title: | Big Earth Data | ||||||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||||||
DOI: | 10.1080/20964471.2020.1820168 | ||||||||||||||||||||||||||||||||
Page Range: | pp. 1-42 | ||||||||||||||||||||||||||||||||
Publisher: | Taylor & Francis | ||||||||||||||||||||||||||||||||
Series Name: | Taylor & Francis | ||||||||||||||||||||||||||||||||
ISSN: | 2096-4471 | ||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||
Keywords: | Data mining, Earth observation, Sentinel-1, Sentinel-2, image semantics, classification maps, analytics, third party mission data | ||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||||||
Deposited By: | Dumitru, Corneliu Octavian | ||||||||||||||||||||||||||||||||
Deposited On: | 27 Nov 2020 15:43 | ||||||||||||||||||||||||||||||||
Last Modified: | 05 Dec 2023 07:10 |
Repository Staff Only: item control page