Dumitru, Corneliu Octavian und Schwarz, Gottfried und Pulak-Siwiec, Anna und Kulawik, Bartosz und Albughdadi, Mohanad und Lorenzo, Jose und Datcu, Mihai (2020) Understanding satellite images: a data mining module for Sentinel images. Big Earth Data, Seiten 1-42. Taylor & Francis. doi: 10.1080/20964471.2020.1820168. ISSN 2096-4471.
PDF
- Verlagsversion (veröffentlichte Fassung)
42MB |
Offizielle URL: https://www.tandfonline.com/doi/full/10.1080/20964471.2020.1820168
Kurzfassung
The increased number of free and open Sentinel satellite images has led to new applications of these data. Among them is the systematic classification of land cover/use types based on patterns of settlements or agriculture recorded by these images, in particular, the identification and quantification of their temporal changes. In this paper, we will present guidelines and practical examples of how to obtain rapid and reliable image patch labelling results and their validation based on data mining techniques for detecting these temporal changes, and presenting these as classification maps and/or statistical analytics. This represents a new systematic validation approach for semantic image content verification. We will focus on a number of different scenarios proposed by the user community using Sentinel data. From a large number of potential use cases, we selected three main cases, namely forest monitoring, flood monitoring, and macro-economics/urban monitoring.
elib-URL des Eintrags: | https://elib.dlr.de/138138/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
Titel: | Understanding satellite images: a data mining module for Sentinel images | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 21 Oktober 2020 | ||||||||||||||||||||||||||||||||
Erschienen in: | Big Earth Data | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
DOI: | 10.1080/20964471.2020.1820168 | ||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 1-42 | ||||||||||||||||||||||||||||||||
Verlag: | Taylor & Francis | ||||||||||||||||||||||||||||||||
Name der Reihe: | Taylor & Francis | ||||||||||||||||||||||||||||||||
ISSN: | 2096-4471 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Data mining, Earth observation, Sentinel-1, Sentinel-2, image semantics, classification maps, analytics, third party mission data | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Dumitru, Corneliu Octavian | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 27 Nov 2020 15:43 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 05 Dez 2023 07:10 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags