Rambour, C and Audebert, N and Koeniguer, E and Le Saux, Bertrand and Crucianu, M and Datcu, Mihai (2020) Flood Detection in Time Series of Optical and SAR Images. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII (B2), pp. 1343-1346. ISPRS 2020, 2020-08-31 - 2020-09-02, online. doi: 10.5194/isprs-archives-XLIII-B2-2020-1343-202. ISSN 1682-1750.
PDF
6MB |
Official URL: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B2-2020/1343/2020/
Abstract
These last decades, Earth Observation brought a number of new perspectives from geosciences to human activity monitoring. As more data became available, Artificial Intelligence (AI) techniques led to very successful results for understanding remote sensing data. Moreover, various acquisition techniques such as Synthetic Aperture Radar (SAR) can also be used for problems that could not be tackled only through optical images. This is the case for weather-related disasters such as floods or hurricanes, which are generally associated with large clouds cover. Yet, machine learning on SAR data is still considered challenging due to the lack of available labeled data. To help the community go forward, we introduce a new dataset composed of co-registered optical and SAR images time series for the detection of flood events and new neural network approaches to leverage these two modalities.
Item URL in elib: | https://elib.dlr.de/138122/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||||||
Title: | Flood Detection in Time Series of Optical and SAR Images | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | 2020 | ||||||||||||||||||||||||||||
Journal or Publication Title: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||
Volume: | XLIII | ||||||||||||||||||||||||||||
DOI: | 10.5194/isprs-archives-XLIII-B2-2020-1343-202 | ||||||||||||||||||||||||||||
Page Range: | pp. 1343-1346 | ||||||||||||||||||||||||||||
ISSN: | 1682-1750 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | Synthetic Aperture Radar, Artificial Intellegence, Machine Learning | ||||||||||||||||||||||||||||
Event Title: | ISPRS 2020 | ||||||||||||||||||||||||||||
Event Location: | online | ||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||
Event Start Date: | 31 August 2020 | ||||||||||||||||||||||||||||
Event End Date: | 2 September 2020 | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||
Deposited By: | Karmakar, Chandrabali | ||||||||||||||||||||||||||||
Deposited On: | 25 Nov 2020 16:43 | ||||||||||||||||||||||||||||
Last Modified: | 10 Jul 2024 08:50 |
Repository Staff Only: item control page