Rambour, C und Audebert, N und Koeniguer, E und Le Saux, Bertrand und Crucianu, M und Datcu, Mihai (2020) Flood Detection in Time Series of Optical and SAR Images. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII (B2), Seiten 1343-1346. ISPRS 2020, 2020-08-31 - 2020-09-02, online. doi: 10.5194/isprs-archives-XLIII-B2-2020-1343-202. ISSN 1682-1750.
PDF
6MB |
Offizielle URL: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B2-2020/1343/2020/
Kurzfassung
These last decades, Earth Observation brought a number of new perspectives from geosciences to human activity monitoring. As more data became available, Artificial Intelligence (AI) techniques led to very successful results for understanding remote sensing data. Moreover, various acquisition techniques such as Synthetic Aperture Radar (SAR) can also be used for problems that could not be tackled only through optical images. This is the case for weather-related disasters such as floods or hurricanes, which are generally associated with large clouds cover. Yet, machine learning on SAR data is still considered challenging due to the lack of available labeled data. To help the community go forward, we introduce a new dataset composed of co-registered optical and SAR images time series for the detection of flood events and new neural network approaches to leverage these two modalities.
elib-URL des Eintrags: | https://elib.dlr.de/138122/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||
Titel: | Flood Detection in Time Series of Optical and SAR Images | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 2020 | ||||||||||||||||||||||||||||
Erschienen in: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
Band: | XLIII | ||||||||||||||||||||||||||||
DOI: | 10.5194/isprs-archives-XLIII-B2-2020-1343-202 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 1343-1346 | ||||||||||||||||||||||||||||
ISSN: | 1682-1750 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Synthetic Aperture Radar, Artificial Intellegence, Machine Learning | ||||||||||||||||||||||||||||
Veranstaltungstitel: | ISPRS 2020 | ||||||||||||||||||||||||||||
Veranstaltungsort: | online | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 31 August 2020 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 2 September 2020 | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||
Hinterlegt von: | Karmakar, Chandrabali | ||||||||||||||||||||||||||||
Hinterlegt am: | 25 Nov 2020 16:43 | ||||||||||||||||||||||||||||
Letzte Änderung: | 10 Jul 2024 08:50 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags