Huang, Zhongling and Datcu, Mihai and Pan, Zongxu and Lei, Bin (2020) Deep SAR-Net: Learning objects from signals. ISPRS Journal of Photogrammetry and Remote Sensing, 161, pp. 179-193. Elsevier. doi: 10.1016/j.isprsjprs.2020.01.016. ISSN 0924-2716.
Full text not available from this repository.
Official URL: https://www.sciencedirect.com/science/article/abs/pii/S0924271620300162
Abstract
This paper introduces a novel Synthetic Aperture Radar (SAR) specific deep learning framework for complex-valued SAR images. The conventional deep convolutional neural networks based methods usually take the amplitude information of single-polarization SAR images as the input to learn hierarchical spatial features automatically, which may have difficulties in discriminating objects with similar texture but discriminative scattering patterns. Our novel deep learning framework, Deep SAR-Net, takes complex-valued SAR images into consideration to learn both spatial texture information and backscattering patterns of objects on the ground. On the one hand, we transfer the detected SAR images pre-trained layers to extract spatial features from intensity images. On the other hand, we dig into the Fourier domain to learn physical properties of the objects by joint time-frequency analysis on complex-valued SAR images. We evaluate the effectiveness of Deep SAR-Net on three complex-valued SAR datasets from Sentinel-1 and TerraSAR-X satellite and demonstrate how it works better than conventional deep CNNs, especially on man-made objects classes. The proposed datasets and the trained Deep SAR-Net model with all codes are provided.
Item URL in elib: | https://elib.dlr.de/138097/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Deep SAR-Net: Learning objects from signals | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | March 2020 | ||||||||||||||||||||
Journal or Publication Title: | ISPRS Journal of Photogrammetry and Remote Sensing | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 161 | ||||||||||||||||||||
DOI: | 10.1016/j.isprsjprs.2020.01.016 | ||||||||||||||||||||
Page Range: | pp. 179-193 | ||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||
ISSN: | 0924-2716 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Deep convolutional neural networkComplex-valued SAR imagesTransfer learningTime-frequency analysisPhysical properties | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Karmakar, Chandrabali | ||||||||||||||||||||
Deposited On: | 25 Nov 2020 17:02 | ||||||||||||||||||||
Last Modified: | 25 Nov 2020 17:02 |
Repository Staff Only: item control page