Huang, Zhongling und Datcu, Mihai und Pan, Zongxu und Lei, Bin (2020) Deep SAR-Net: Learning objects from signals. ISPRS Journal of Photogrammetry and Remote Sensing, 161, Seiten 179-193. Elsevier. doi: 10.1016/j.isprsjprs.2020.01.016. ISSN 0924-2716.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://www.sciencedirect.com/science/article/abs/pii/S0924271620300162
Kurzfassung
This paper introduces a novel Synthetic Aperture Radar (SAR) specific deep learning framework for complex-valued SAR images. The conventional deep convolutional neural networks based methods usually take the amplitude information of single-polarization SAR images as the input to learn hierarchical spatial features automatically, which may have difficulties in discriminating objects with similar texture but discriminative scattering patterns. Our novel deep learning framework, Deep SAR-Net, takes complex-valued SAR images into consideration to learn both spatial texture information and backscattering patterns of objects on the ground. On the one hand, we transfer the detected SAR images pre-trained layers to extract spatial features from intensity images. On the other hand, we dig into the Fourier domain to learn physical properties of the objects by joint time-frequency analysis on complex-valued SAR images. We evaluate the effectiveness of Deep SAR-Net on three complex-valued SAR datasets from Sentinel-1 and TerraSAR-X satellite and demonstrate how it works better than conventional deep CNNs, especially on man-made objects classes. The proposed datasets and the trained Deep SAR-Net model with all codes are provided.
elib-URL des Eintrags: | https://elib.dlr.de/138097/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Deep SAR-Net: Learning objects from signals | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | März 2020 | ||||||||||||||||||||
Erschienen in: | ISPRS Journal of Photogrammetry and Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 161 | ||||||||||||||||||||
DOI: | 10.1016/j.isprsjprs.2020.01.016 | ||||||||||||||||||||
Seitenbereich: | Seiten 179-193 | ||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||
ISSN: | 0924-2716 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Deep convolutional neural networkComplex-valued SAR imagesTransfer learningTime-frequency analysisPhysical properties | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Karmakar, Chandrabali | ||||||||||||||||||||
Hinterlegt am: | 25 Nov 2020 17:02 | ||||||||||||||||||||
Letzte Änderung: | 25 Nov 2020 17:02 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags