Yao, Wei and Moumtzidou, Anastasia and Dumitru, Corneliu Octavian and Stelios, Andreadis and Gialampoukidis, Ilias and Vrochidis, Stefanos and Datcu, Mihai and Kompatsiaris, Ioannis (2021) Early and late fusion of multiple modalities in Sentinel imagery and social media retrieval. In: 25th International Conference on Pattern Recognition, ICPR 2020, 12667, pp. 591-606. Springer. ICPR 2020, 2021-01-10 - 2021-01-15, online. doi: 10.1007/978-3-030-68787-8_43. ISBN 978-1-7281-8808-9. ISSN 1051-4651.
PDF
6MB |
Official URL: https://link.springer.com/chapter/10.1007%2F978-3-030-68787-8_43
Abstract
Discovering potential concepts and events by analyzing Earth Observation (EO) data may be supported by fusing other distributed data sources such as non-EO data, for instance, in-situ citizen observations from social media. The retrieval of relevant information based on a target query or event is critical for operational purposes, for example, to monitor flood events in urban areas, and crop monitoring for food security scenarios. To that end, we propose an early-fusion (low-level features) and late-fusion (high-level concepts) mechanism that combines the results of two EU-funded projects for information retrieval in Sentinel imagery and social media data sources. In the early fusion part, the model is based on active learning that effectively merges Sentinel-1 and Sentinel-2 bands, and assists users to extract patterns. On the other hand, the late fusion mechanism exploits the context of other georeferenced data such as social media retrieval, to further enrich the list of retrieved Sentinel image patches. Quantitative and qualitative results show the effectiveness of our proposed approach.
Item URL in elib: | https://elib.dlr.de/138091/ | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||||||||||||||||||
Title: | Early and late fusion of multiple modalities in Sentinel imagery and social media retrieval | ||||||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||||||
Date: | January 2021 | ||||||||||||||||||||||||||||||||||||
Journal or Publication Title: | 25th International Conference on Pattern Recognition, ICPR 2020 | ||||||||||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||||||||||
Volume: | 12667 | ||||||||||||||||||||||||||||||||||||
DOI: | 10.1007/978-3-030-68787-8_43 | ||||||||||||||||||||||||||||||||||||
Page Range: | pp. 591-606 | ||||||||||||||||||||||||||||||||||||
Publisher: | Springer | ||||||||||||||||||||||||||||||||||||
Series Name: | Lecture Notes in Computer Science | ||||||||||||||||||||||||||||||||||||
ISSN: | 1051-4651 | ||||||||||||||||||||||||||||||||||||
ISBN: | 978-1-7281-8808-9 | ||||||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||||||
Keywords: | Multimodal data fusion, Sentinel imagery retrieval, Social media retrieval, Earth Observation, Big Data | ||||||||||||||||||||||||||||||||||||
Event Title: | ICPR 2020 | ||||||||||||||||||||||||||||||||||||
Event Location: | online | ||||||||||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||||||||||
Event Start Date: | 10 January 2021 | ||||||||||||||||||||||||||||||||||||
Event End Date: | 15 January 2021 | ||||||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Optical remote sensing, R - Artificial Intelligence | ||||||||||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||||||||||
Deposited By: | Yao, Wei | ||||||||||||||||||||||||||||||||||||
Deposited On: | 26 Nov 2020 16:03 | ||||||||||||||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:40 |
Repository Staff Only: item control page