Sibler, Philipp and Wang, Yuanyuan and Auer, Stefan and Ali, Syed Mohsin and Zhu, Xiao Xiang (2021) Generative adversarial networks for synthesizing InSAR patches. In: Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR, pp. 1-6. EUSAR 2020, 2021-03-29 - 2021-04-01, Leipzig, Germany, ONLINE. ISSN 2197-4403.
PDF
3MB |
Official URL: https://arxiv.org/abs/2008.01184
Abstract
Generative Adversarial Networks (GANs) have been employed with certain success for image translation tasks between optical and real-valued SAR intensity imagery. Applications include aiding interpretability of SAR scenes with their optical counterparts by artificial patch generation and automatic SAR-optical scene matching. The synthesis of artificial complex-valued InSAR image stacks asks for, besides good perceptual quality, more stringent quality metrics like phase noise and phase coherence. This paper provides a signal processing model of generative CNN structures, describes effects influencing those quality metrics and presents a mapping scheme of complex-valued data to given CNN structures based on popular Deep Learning frameworks.
Item URL in elib: | https://elib.dlr.de/138062/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||
Title: | Generative adversarial networks for synthesizing InSAR patches | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | March 2021 | ||||||||||||||||||||||||
Journal or Publication Title: | Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
Page Range: | pp. 1-6 | ||||||||||||||||||||||||
ISSN: | 2197-4403 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | GAN, InSAR, simulation | ||||||||||||||||||||||||
Event Title: | EUSAR 2020 | ||||||||||||||||||||||||
Event Location: | Leipzig, Germany, ONLINE | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 29 March 2021 | ||||||||||||||||||||||||
Event End Date: | 1 April 2021 | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence, R - SAR methods | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science Remote Sensing Technology Institute > Photogrammetry and Image Analysis | ||||||||||||||||||||||||
Deposited By: | Wang, Yuanyuan | ||||||||||||||||||||||||
Deposited On: | 01 Dec 2020 15:17 | ||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:39 |
Repository Staff Only: item control page