Sibler, Philipp und Wang, Yuanyuan und Auer, Stefan und Ali, Syed Mohsin und Zhu, Xiao Xiang (2021) Generative adversarial networks for synthesizing InSAR patches. In: Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR, Seiten 1-6. EUSAR 2020, 2021-03-29 - 2021-04-01, Leipzig, Germany, ONLINE. ISSN 2197-4403.
|
PDF
3MB |
Offizielle URL: https://arxiv.org/abs/2008.01184
Kurzfassung
Generative Adversarial Networks (GANs) have been employed with certain success for image translation tasks between optical and real-valued SAR intensity imagery. Applications include aiding interpretability of SAR scenes with their optical counterparts by artificial patch generation and automatic SAR-optical scene matching. The synthesis of artificial complex-valued InSAR image stacks asks for, besides good perceptual quality, more stringent quality metrics like phase noise and phase coherence. This paper provides a signal processing model of generative CNN structures, describes effects influencing those quality metrics and presents a mapping scheme of complex-valued data to given CNN structures based on popular Deep Learning frameworks.
| elib-URL des Eintrags: | https://elib.dlr.de/138062/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
| Titel: | Generative adversarial networks for synthesizing InSAR patches | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | März 2021 | ||||||||||||||||||||||||
| Erschienen in: | Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||
| Seitenbereich: | Seiten 1-6 | ||||||||||||||||||||||||
| ISSN: | 2197-4403 | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | GAN, InSAR, simulation | ||||||||||||||||||||||||
| Veranstaltungstitel: | EUSAR 2020 | ||||||||||||||||||||||||
| Veranstaltungsort: | Leipzig, Germany, ONLINE | ||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
| Veranstaltungsbeginn: | 29 März 2021 | ||||||||||||||||||||||||
| Veranstaltungsende: | 1 April 2021 | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, R - SAR-Methoden | ||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||||||
| Hinterlegt von: | Wang, Yuanyuan | ||||||||||||||||||||||||
| Hinterlegt am: | 01 Dez 2020 15:17 | ||||||||||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:39 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags