Sibler, Philipp und Wang, Yuanyuan und Auer, Stefan und Ali, Syed Mohsin und Zhu, Xiao Xiang (2021) Generative adversarial networks for synthesizing InSAR patches. In: Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR, Seiten 1-6. EUSAR 2020, 2021-03-29 - 2021-04-01, Leipzig, Germany, ONLINE. ISSN 2197-4403.
PDF
3MB |
Offizielle URL: https://arxiv.org/abs/2008.01184
Kurzfassung
Generative Adversarial Networks (GANs) have been employed with certain success for image translation tasks between optical and real-valued SAR intensity imagery. Applications include aiding interpretability of SAR scenes with their optical counterparts by artificial patch generation and automatic SAR-optical scene matching. The synthesis of artificial complex-valued InSAR image stacks asks for, besides good perceptual quality, more stringent quality metrics like phase noise and phase coherence. This paper provides a signal processing model of generative CNN structures, describes effects influencing those quality metrics and presents a mapping scheme of complex-valued data to given CNN structures based on popular Deep Learning frameworks.
elib-URL des Eintrags: | https://elib.dlr.de/138062/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Generative adversarial networks for synthesizing InSAR patches | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | März 2021 | ||||||||||||||||||||||||
Erschienen in: | Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1-6 | ||||||||||||||||||||||||
ISSN: | 2197-4403 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | GAN, InSAR, simulation | ||||||||||||||||||||||||
Veranstaltungstitel: | EUSAR 2020 | ||||||||||||||||||||||||
Veranstaltungsort: | Leipzig, Germany, ONLINE | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 29 März 2021 | ||||||||||||||||||||||||
Veranstaltungsende: | 1 April 2021 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, R - SAR-Methoden | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||||||
Hinterlegt von: | Wang, Yuanyuan | ||||||||||||||||||||||||
Hinterlegt am: | 01 Dez 2020 15:17 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:39 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags