Schiel, Felix und Hagengruber, Annette und Vogel, Jörn und Triebel, Rudolph (2020) Incremental learning of EMG-based Control commands using Gaussian Processes. In: 4th Conference on Robot Learning, CoRL 2020, 155. PMLR. Conference on Robot Learning (CoRL) 2020, 2020-11-16 - 2020-11-18, virtual conference. ISSN 2640-3498.
PDF
622kB |
Kurzfassung
Myoelectric control is the process of controlling a prosthesis or an assistive robot by using electrical signals of the muscles. Pattern recognition in myoelectric control is a challenging field, since the underlying distribution of the signal is likely to change during the application. Covariate shifts, including changes of the arm position or different levels of muscular activation, often lead to significant instability of the control signal. This work tries to overcome These challenges by enhancing a myoelectric human machine interface through the use of the sparse Gaussian Process (sGP) approximation Variational Free Energy and by the introduction of a novel adaptive model based on an unsupervised incremental learning approach. The novel adaptive model integrates an interclass and intraclass distance to improve prediction stability under challenging conditions. Furthermore, it demonstrates the successful incorporation of incremental updates which is shown to lead to a significantly increased performance and higher stability of the predictions in an online user study.
elib-URL des Eintrags: | https://elib.dlr.de/138025/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Incremental learning of EMG-based Control commands using Gaussian Processes | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | November 2020 | ||||||||||||||||||||
Erschienen in: | 4th Conference on Robot Learning, CoRL 2020 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Band: | 155 | ||||||||||||||||||||
Verlag: | PMLR | ||||||||||||||||||||
ISSN: | 2640-3498 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Sparse GP Regression, Incremental Learning, myoelectric Human Machine Interface | ||||||||||||||||||||
Veranstaltungstitel: | Conference on Robot Learning (CoRL) 2020 | ||||||||||||||||||||
Veranstaltungsort: | virtual conference | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 16 November 2020 | ||||||||||||||||||||
Veranstaltungsende: | 18 November 2020 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Terrestrische Assistenz-Robotik (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Kognitive Robotik Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||||||
Hinterlegt von: | Hagengruber, Annette | ||||||||||||||||||||
Hinterlegt am: | 24 Nov 2020 17:23 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:39 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags