Hang, Renlong and Li, Zhu and Ghamisi, Pedram and Hong, Danfeng and Xia, Guiyu and Liu, Qingshan (2020) Classification of Hyperspectral and LiDAR Data Using Coupled CNNs. IEEE Transactions on Geoscience and Remote Sensing, 58 (7), 4939 -4950. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2020.2969024. ISSN 0196-2892.
PDF
- Published version
3MB |
Official URL: https://ieeexplore.ieee.org/document/8985546
Abstract
In this article, we propose an efficient and effective framework to fuse hyperspectral and light detection and ranging (LiDAR) data using two coupled convolutional neural networks (CNNs). One CNN is designed to learn spectral-spatial features from hyperspectral data, and the other one is used to capture the elevation information from LiDAR data. Both of them consist of three convolutional layers, and the last two convolutional layers are coupled together via a parameter-sharing strategy. In the fusion phase, feature-level and decision-level fusion methods are simultaneously used to integrate these heterogeneous features sufficiently. For the feature-level fusion, three different fusion strategies are evaluated, including the concatenation strategy, the maximization strategy, and the summation strategy. For the decision-level fusion, a weighted summation strategy is adopted, where the weights are determined by the classification accuracy of each output. The proposed model is evaluated on an urban data set acquired over Houston, USA, and a rural one captured over Trento, Italy. On the Houston data, our model can achieve a new record overall accuracy (OA) of 96.03%. On the Trento data, it achieves an OA of 99.12%. These results sufficiently certify the effectiveness of our proposed model.
Item URL in elib: | https://elib.dlr.de/137921/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||
Title: | Classification of Hyperspectral and LiDAR Data Using Coupled CNNs | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | July 2020 | ||||||||||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||
Volume: | 58 | ||||||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2020.2969024 | ||||||||||||||||||||||||||||
Page Range: | 4939 -4950 | ||||||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | Convolutional neural networks (CNNs), decision fusion, feature fusion, hyperspectral data, light detection and ranging (LiDAR) data, parameter sharing. | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Optical remote sensing | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||
Deposited By: | Liu, Rong | ||||||||||||||||||||||||||||
Deposited On: | 25 Nov 2020 18:42 | ||||||||||||||||||||||||||||
Last Modified: | 25 Nov 2020 18:42 |
Repository Staff Only: item control page