Hang, Renlong und Li, Zhu und Ghamisi, Pedram und Hong, Danfeng und Xia, Guiyu und Liu, Qingshan (2020) Classification of Hyperspectral and LiDAR Data Using Coupled CNNs. IEEE Transactions on Geoscience and Remote Sensing, 58 (7), 4939 -4950. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2020.2969024. ISSN 0196-2892.
PDF
- Verlagsversion (veröffentlichte Fassung)
3MB |
Offizielle URL: https://ieeexplore.ieee.org/document/8985546
Kurzfassung
In this article, we propose an efficient and effective framework to fuse hyperspectral and light detection and ranging (LiDAR) data using two coupled convolutional neural networks (CNNs). One CNN is designed to learn spectral-spatial features from hyperspectral data, and the other one is used to capture the elevation information from LiDAR data. Both of them consist of three convolutional layers, and the last two convolutional layers are coupled together via a parameter-sharing strategy. In the fusion phase, feature-level and decision-level fusion methods are simultaneously used to integrate these heterogeneous features sufficiently. For the feature-level fusion, three different fusion strategies are evaluated, including the concatenation strategy, the maximization strategy, and the summation strategy. For the decision-level fusion, a weighted summation strategy is adopted, where the weights are determined by the classification accuracy of each output. The proposed model is evaluated on an urban data set acquired over Houston, USA, and a rural one captured over Trento, Italy. On the Houston data, our model can achieve a new record overall accuracy (OA) of 96.03%. On the Trento data, it achieves an OA of 99.12%. These results sufficiently certify the effectiveness of our proposed model.
elib-URL des Eintrags: | https://elib.dlr.de/137921/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | Classification of Hyperspectral and LiDAR Data Using Coupled CNNs | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | Juli 2020 | ||||||||||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
Band: | 58 | ||||||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2020.2969024 | ||||||||||||||||||||||||||||
Seitenbereich: | 4939 -4950 | ||||||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Convolutional neural networks (CNNs), decision fusion, feature fusion, hyperspectral data, light detection and ranging (LiDAR) data, parameter sharing. | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||
Hinterlegt von: | Liu, Rong | ||||||||||||||||||||||||||||
Hinterlegt am: | 25 Nov 2020 18:42 | ||||||||||||||||||||||||||||
Letzte Änderung: | 25 Nov 2020 18:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags