Hong, Danfeng und Yokoya, Naoto und Xia, Gui-Song und Chanussot, Jocelyn und Zhu, Xiao Xiang (2020) X-ModalNet: A Semi-Supervised Deep Cross-Modal Network for Classification of Remote Sensing Data. ISPRS Journal of Photogrammetry and Remote Sensing, 167, Seiten 12-23. Elsevier. doi: 10.1016/j.isprsjprs.2020.06.014. ISSN 0924-2716.
PDF
- Verlagsversion (veröffentlichte Fassung)
11MB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0924271620301726
Kurzfassung
This paper addresses the problem of semi-supervised transfer learning with limited cross-modality data in remote sensing. A large amount of multi-modal earth observation images, such as multispectral imagery (MSI) or synthetic aperture radar (SAR) data, are openly available on a global scale, enabling parsing global urban scenes through remote sensing imagery. However, their ability in identifying materials (pixel-wise classification) remains limited, due to the noisy collection environment and poor discriminative information as well as limited number of well-annotated training images. To this end, we propose a novel cross-modal deep-learning framework, called X-ModalNet, with three well-designed modules: self-adversarial module, interactive learning module, and label propagation module, by learning to transfer more discriminative information from a small-scale hyperspectral image (HSI) into the classification task using a large-scale MSI or SAR data. Significantly, X-ModalNet generalizes well, owing to propagating labels on an updatable graph constructed by high-level features on the top of the network, yielding semi-supervised cross-modality learning. We evaluate X-ModalNet on two multi-modal remote sensing datasets (HSI-MSI and HSI-SAR) and achieve a significant improvement in comparison with several state-of-the-art methods.
elib-URL des Eintrags: | https://elib.dlr.de/137920/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | X-ModalNet: A Semi-Supervised Deep Cross-Modal Network for Classification of Remote Sensing Data | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | September 2020 | ||||||||||||||||||||||||
Erschienen in: | ISPRS Journal of Photogrammetry and Remote Sensing | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 167 | ||||||||||||||||||||||||
DOI: | 10.1016/j.isprsjprs.2020.06.014 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 12-23 | ||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||
ISSN: | 0924-2716 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Adversarial;Cross-modality;Deep learning;Deep neural network;FusionHyperspectra;lMultispectral;Mutual learning;Label propagation;Remote sensing;Semi-supervised;Synthetic aperture radar | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Sicherheitsrelevante Erdbeobachtung, R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Liu, Rong | ||||||||||||||||||||||||
Hinterlegt am: | 25 Nov 2020 18:39 | ||||||||||||||||||||||||
Letzte Änderung: | 23 Okt 2023 13:55 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags