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A B S T R A C T

This paper addresses the problem of semi-supervised transfer learning with limited cross-modality data in re-
mote sensing. A large amount of multi-modal earth observation images, such as multispectral imagery (MSI) or
synthetic aperture radar (SAR) data, are openly available on a global scale, enabling parsing global urban scenes
through remote sensing imagery. However, their ability in identifying materials (pixel-wise classification) re-
mains limited, due to the noisy collection environment and poor discriminative information as well as limited
number of well-annotated training images. To this end, we propose a novel cross-modal deep-learning frame-
work, called X-ModalNet, with three well-designed modules: self-adversarial module, interactive learning
module, and label propagation module, by learning to transfer more discriminative information from a small-
scale hyperspectral image (HSI) into the classification task using a large-scale MSI or SAR data. Significantly, X-
ModalNet generalizes well, owing to propagating labels on an updatable graph constructed by high-level fea-
tures on the top of the network, yielding semi-supervised cross-modality learning. We evaluate X-ModalNet on
two multi-modal remote sensing datasets (HSI-MSI and HSI-SAR) and achieve a significant improvement in
comparison with several state-of-the-art methods.

1. Introduction

Currently operational radar (e.g., Sentinel-1) and optical broadband
(multispectral) satellites (e.g., Sentinel-2 and Landsat-8) enable the
synthetic aperture radar (SAR) (Kang et al., 2020) and multispectral
image (MSI) (Zhang et al., 2019a) openly available on a global scale.
Therefore, there has been a growing interest in understanding our en-
vironment through remote sensing (RS) images, which is of great
benefit to many potential applications such as image classification (Tuia
et al., 2015; Han et al., 2018; Srivastava et al., 2019; Cao et al., 2020a),
object and change detection (Zhang et al., 2018b, 2019b; Wu et al.,
2019; Wu et al., 2020), mineral exploration (Gao et al., 2017a; Hong
and Zhu, 2018; Hong et al., 2019b; Yao et al., 2019), multi-modality
data analysis (Hong et al., 2019d, 2020a; Hu et al., 2019a; Yang et al.,

2019), to name a few. In particular, RS data classification is a funda-
mental but still challenging problem across computer vision and RS
fields. It aims to assign a semantic category to each pixel in a studied
urban scene. For example, in Gao et al. (2017b), spectral-spatial in-
formation is applied to significantly suppress the influence of noise in
dimensionality reduction, and the proposed method is obviously ef-
fective in extracting nonlinear features and improving the classification
accuracy.

Recently, enormous efforts have been made on developing deep
learning (DL)-based approaches (LeCun et al., 2015), such as deep
neural networks (DNNs) and convolutional neural networks (CNNs), to
parse urban scenes by using street view images. Yet it is less in-
vestigated at the level of satellite-borne or aerial images. Bridging ad-
vanced learning-based techniques or vision algorithms with RS imagery
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could allow for a variety of new applications potentially conducted on a
larger and even a global scale. A qualitative comparison is given in
Table 1 to highlight the differences as well as advantages and dis-
advantages in the classification task using different scene images (e.g.,
street view or RS images).

1.1. Motivation and objective

We clarify our motivation to answer the following three “why”
questions: (1) Why classify or parse RS images? (2) Why use multimodal
data? (3) Why learn the cross-modal representation?

• From Street to Earth Vision Remotely sensed imagery can provide
a new insight for global urban scene understanding. The data in
Earth Vision, on one hand, benefit from a “bird’s perspective,”
providing a structure-related multiview surface information; and, on
the other hand, it is acquired on a wider and even global scale.
• From Unimodal to Multimodal Data Limited by the low image
resolution and a handful of labeled samples, unimodal RS data are
inevitable to meet the bottleneck in performance gain, despite being
able to be openly and largely acquired. Therefore, an alternative to
maximize the classification accuracy is to jointly leverage the mul-
timodal data.
• From Multimodal to Crossmodal Learning In reality, a large
amount of information-rich data, such as hyperspectral imagery
(HSI), are hardly collected due to technical limitations of satellite
sensors. Thus, only the limited multimodal correspondences can be
used to train a model, while one modality is absent in the test phase.
This is a typical cross-modality learning (CML) issue.

Fig. 1 illustrates the to-be-solved problem and potential solution,
where MSI in magenta or SAR in cyan is freely available at a large and
even global scale but they are limited by relatively poor feature re-
presentation ability, while the HSI in red is characterized by rich
spectral information but fails to be acquired in a large-covered area.
This naturally leads to a general but interesting question: can a limited
amount of spectrally discriminative HSI improve the parsing performance of
a large amount of low-quality data (SAR or MSI) in the large-scale classi-
fication or mapping task? A feasible solution to the problem is the CML.

Motivated by the above analysis, the CML issue that we aim at
tackling can be further generalized to three specific challenges related
to computer vision or machine learning.

• RS images acquired from the satellites or airplanes inevitably suffer
from various variations caused by environmental conditions (e.g.,
illumination and topology changes, atmospheric effects) and in-
strumental configurations (e.g., sensor noise).
• Multimodal RS data are usually characterized by the different
properties. Blending multi/ cross-modal representation in a more
effective and compacted way is still an important challenge in our
case.

• RS images in Earth Vision can provide a larger-scale visual field.
This tends to lead to costly labeling and noisy annotations in the
process of data preparation.

According to the three factors, our objective can be summarized to
develop novel approaches or improve the existing ones, yielding a more
discriminative multimodality blending and robust against various
variabilities in RS images with the limited number of training annota-
tions.

1.2. Method overview and contributions

Towards the aforementioned goals, a novel cross-modal DL frame-
work is proposed in a semi-supervised fashion, called X-ModalNet, for
RS image classification. As illustrated in Fig. 2, a three-stream network
is developed to learn the multimodal joint representation in con-
sideration of unlabeled samples, where the network parameters would
be shared from the same modalities. Moreover, an interactive learning
strategy is modeled across the two modalities to facilitate the in-
formation blending more effectively. Prior to the interactive learning
(IL) module, we also embed a self-adversarial (SA) module robustly
against noise attack, thereby enhance the model’s generalization cap-
ability. To fully make use of unlabeled samples, we iteratively update
pseudo-labels by label propagation (LP) on the graph constructed by
high-level hidden representations. Extensive experiments are conducted
on two multimodal datasets (HSI-MSI and HSI-SAR), showing the ef-
fectiveness and superiority of our proposed X-ModalNet in the RS data
classification task.

The main contributions can be highlighted in four-folds:

• To our best knowledge, this is the first time to investigate the HSI-
aided CML’s case by designing such deep cross-modal network (X-
ModalNet) in RS fields for improving the classification accuracy of
only using MSI or SAR with the aid of a limited amount of HSI
samples.
• According to spatially high resolution of MSI (SAR) as well as
spectrally high resolution of HSI, our X-ModalNet is a novel and
promising network architecture reasonably, which takes a hybrid
network as backbone, that is, CNN for MSI or SAR and DNN for HSI.
Such design enables the best full use of high spatial and rich spectral
information from MSI or SAR and HSI, respectively.
• We propose two novel plug-and-play modules: SA module and IL
module, aiming at improving the robustness and discrimination of
the multimodal representation. On the one hand, we modularize the
idea of generative adversarial networks (GANs) (Goodfellow et al.,
2014a) into the network to generate robust feature representations
by simultaneously learning original features and adversarial features
in SA module. On the other hand, we design the IL module for better
information blending across modalities by interactively sharing the
network weights to generate more discriminative and compact
features.
• We design an updatable LP mechanism into our proposed end-to-
end networks by progressively optimizing pseudo-labels to further
find a better decision boundary.
• We validate the superiority and effectiveness of X-ModalNet on two
cross-modal datasets with extensive ablation analysis, where we
collected and processed the Sentinel-1 SAR data for the second da-
tasets.

2. Related work

2.1. Scene parsing

Most recently, the research on scene parsing has made un-
precedented progress, owing to the powerful DNNs (Krizhevsky et al.,
2012). Most of these state-of-the-art DL-based frameworks for scene

Table 1
Qualitative comparison of urban scene parsing using street view images and RS
images in terms of goal, acquisition perspective, scene covering scale, spatial
resolution, feature diversity, data accessibility, and ground truth maps used for
training.

Urban Scene Parsing Street View Images RS Images

Goal Pixel-wise Classification
Perspective Horizontal “Bird’s”
Scene Scale Small Large
Spatial Resolution High Low
Feature Diversity Low High
Accessibility Moderate Easy
Ground Truth Maps Dense Sparse
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parsing (Yu and Koltun, 2015; Noh et al., 2015; Xia et al., 2016; Zhao
et al., 2017; Li et al., 2017; Zhang et al., 2018a; Chen et al., 2018; Rasti
et al., 2020) are closely associated with two seminal works presented on
the prototype of deep CNN: fully convolutional network (Long et al.,
2015), DeepLab (Chen et al., 2018). However, a nearly horizontal field
of vision makes it difficult to parse a large urban area without ex-
tremely diverse training samples. Therefore, RS images might be a
feasible and desirable alternative.

We observed that the RS imagery has attracted increasing interest in
computer vision field (Lanaras et al., 2015; Xia et al., 2018; Marcos
et al., 2018), as it generally holds a diversified and structured source of
information, which can be used for better scene understanding and
further make a significant breakthrough in global urban motoring and
planning (Demir et al., 2018). Chen et al. (2014) fed the vector-based
input into a DNN for predicting the category labels in the HSI. They
extended their work by training a CNN to achieve a spatial-spectral HSI
classification CNN (Chen et al., 2016). Hang et al. (2019) utilized a
Cascaded RNN to parse the HSI scenes. Perceptibly, the scene parsing in
Earth Vision is normally performed by training an end-to-end network
with a vector-based or a patch-based input, as the sparse labels (see
Fig. 1) cannot support us to train a FCN-like model. As listed in Table 1,
RS images are noisy but low resolution, and are relatively expensive
and time-consuming in labeling, limiting the performance improve-
ment. A feasible solution to the issue is to introduce other modalities
(e.g., HSI) with more discriminative information, yielding multimodal
data analysis.

2.2. Multi/cross-modal learning

Multimodal representation learning related to DNN can be cate-
gorized into two aspects (Baltrušaitis et al., 2018).

2.2.1. Joint representation learning
The basic idea is to find a joint space where the discriminative

feature representation is expected to be learned over multi-modalities
with multilayered neural networks. Although some recent works have
attempted to challenge the CML issue by using joint representation
learning strategy, e.g., Hong et al. (2019c, 2020a), yet these methods
remain limited in data representation and fusion, particularly for het-
erogeneous data, due to their linearized modeling. A representative
work in the multimodal deep learning (MDL) was proposed by Ngiam
et al. (2011), in which the high-level features for each modality are
extracted using a stacked denoising autoencoder (SDAE) and then
jointly learned to a multimodal representation by an additional encoder
layer. Silberer and Lapata (2014) extended the work to a semi-su-
pervised version by additionally using a term into loss function that
predicts the labels. Similarly, Srivastava et al. utilized the deep belief
network (Srivastava and Salakhutdinov, 2012a) and deep Boltzmann
machines (Srivastava and Salakhutdinov, 2012b) to explain the multi-
modal data fusion or learning from the perspective of probabilistic
graphical models. In Rastegar et al. (2016), a novel multimodal DL with
cross weights (MDL-CW) is proposed to interactively represent the
multimodal features for a more effective information blending. Besides,
some follow-up work has been successively proposed to learn the joint
feature representation more effectively and efficiently (Ouyang et al.,
2014; Wang et al., 2014; Peng et al., 2016; Silberer et al., 2017; Luo
et al., 2017; Liu et al., 2019).

2.2.2. Coordinated representation learning
It builds the disjunct subnetworks to learn the discriminative fea-

tures independently for each modality and couples them by enforcing
various structured constraints onto the resulting encoder layers. These
structures can be measured by similarity (Frome et al., 2013; Feng
et al., 2014), correlation (Chandar et al., 2016), and sequentiality
(Vendrov et al., 2015), etc.

In recent years, some tentative work has been proposed for

multimodal data analysis in RS (Gómez-Chova et al., 2015;
Kampffmeyer et al., 2016; Máttyus et al., 2016; Audebert et al., 2016,
2017; Zampieri et al., 2018; Ghosh et al., 2018). Related to ours for
scene parsing with multimodal deep networks, an early deep fusion
architecture, simply stacking all multi-modalities as input, is used for
semantic segmentation of urban RS images (Kampffmeyer et al., 2016).
In Audebert et al. (2017), optical and OpenStreetMap (Haklay and
Weber, 2008) data are jointly applied with a two-stream deep network
for getting a faster and better semantic map. Audebert et al. (2018)
parsed the urban scenes under the SegNet-like architecture
(Badrinarayanan et al., 2017) by using MSI and Lidar. Similarly, Ghosh
et al. (2018) proposed a stacked U-Nets for material segmentation of RS
imagery. Nevertheless, these methods are mostly developed with op-
tical (MSI or RGB) or Lidar data for the rough-grained scene parsing
(only few categories) and fail to perform sufficiently well in a complex
urban scene due to the relatively poor feature representation ability
behind the networks, especially in CML (Ngiam et al., 2011).

2.3. Semi-supervised learning

Considering the fact that the labeling cost is very expensive, parti-
cularly for RS images, the use of unlabeled samples has gathered in-
creasing attention as a feasible solution to further improve the classi-
fication performance of RS data. There have been many non-DL-based
semi-supervised learning approaches in a variety of RS-related appli-
cations, such as regression-based multitask learning (Hong et al.,
2019a; Hong, 2019), manifold alignment (Tuia et al., 2014, 2019b),
factor analysis (Zhao et al., 2019). Yet this topic is less investigated by
using the DL-based approaches. Cao et al. (2020b) integrated CNNs and
active learning to better utilize the unlabeled samples for hyperspectral
image classification. Riese et al. (2020) developed a semi-supervised
shallow network – self-organizing map framework – to classify and
estimate physical parameters from MSI and HSI. Nevertheless, how to
embed the semi-supervised techniques into deep networks more effec-
tively remains challenging.

3. The proposed X-ModalNet

The CML’s problem setting drives us to develop a robust and dis-
criminative network for pixel-wise classification of RS images in com-
plex scenes. Fig. 2 illustrates the architecture overview of the X-Mod-
alNet, which is built upon a three-stream deep architecture. The IL
module is designed for highly compact feature blending before feeding
the features of each modality into joint representation, and we also
equip with the SA module and an iterative LP mechanism to improve
the robustness and the generalization ability of the proposed X-Mod-
alNet, particularly in the presence of noisy samples.

3.1. Network architecture

The bimodal deep autoencoder (DAE) in Ngiam et al. (2011) is a
well-known work in MDL, and we advance it to the proposed X-Mod-
alNet for classification of RS imagery. The differences and improve-
ments mainly lie in four aspects.

3.1.1. Hybrid network architecture
Similarly to Cangea et al. (2017), we propose a hybrid-stream net-

work architecture in a bimodal DAE fashion, including two CNN-
streams on the labeled MSI (SAR) and unlabeled one, and a DNN-stream
on HSI, to exploit high spatial information of MSI/SAR data and high
spectral information of HSI more effectively. Since hyperspectral ima-
ging enables discrimination between spectrally similar classes (high-
spectral resolution) but its swath width from space is narrow compared
to multispectral or SAR ones (high-spatial resolution). More specifi-
cally, we take the patches centered by pixels as the input of CNN-
streams for labeled and unlabeled MSIs (SARs), and the spectral
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signatures of the corresponding pixels as the input of DNN-stream for
labeled HSI. Moreover, the reconstructed patches (CNN-streams) and
spectral signatures (DNN-stream) of all pixels as well as the one-hot
encoded labels can be regarded as the network outputs.

3.1.2. Self-adversarial module
Due to the environmental factors (e.g., illumination, physically and

chemically atmospheric effects) and instrumental errors, it is inevitable
to have some distortions in RS imaging. These noisy images tend to
generate attacked samples, thereby hurting the network performance
(Szegedy et al., 2013; Goodfellow et al., 2014b; Melis et al., 2017).
Unlike the previous adversarial training approaches (Donahue et al.,
2016; Biggio and Roli, 2018) that generate adversarial samples in the
first place and then feed them into a new network for training, we learn
the adversarial information in the feature-based level rather than the
sample-based one, with an end-to-end learning process. This might lead
to a more robust feature representation in accord with the learned
network parameters. As illustrated in Fig. 3(a), given a vector-based
feature input of the module, the network is first split into two streams
(NS). It is well-known that the discriminator in GANs enables the
generation of adversarial examples to fool the networks. Inspired by it,
we assume that in our SA module, one stream extracts or generates the
high-level features of the input, while another one correspondingly
learns the adversarial features by allowing for an adversarial loss on the
top layer (AL). In this process, the discriminator can be well regarded as
a constraint to achieve the function. In addition, this has been also
proven to be effective by the reference Yu et al. (2019) to a great extent.
Finally, the features represented from the two subnetworks are con-
catenated as the module output (FC) in order to generate more robust
feature representations by simultaneously considering the original
features and its adversarial features into the network training. More-
over, the superiority of our SA module mainly lies in that the para-
meters in the module is an end-to-end trainable in the whole X-Mod-
alNet, which can make the learned adversarial features more suitable
for our classification tasks. By contrary, if we select to first generate
adversarial samples by using an independent GAN and feed them into
the classification network together with existing real samples, then the

generated adversarial samples could bring the uncertainty for the
classification performance improvement. The main reason is that the
adversarial samples are generated by an independent GAN, which
might be applicable to the GAN but might not be applicable to the
classification network because they are trained separately.

3.1.3. Interactive learning module
We found that in the layer of multimodal joint representation,

massive connections occur in variables from the same modality but few
neurons across the modalities are activated, even if each modality
passes through multiple individual hidden layers before being fed into
the joint layer. Different from the hard-interactive mapping learning in
Rastegar et al. (2016) and Nie et al. (2018) that additionally learns the
weights across the different modalities, we propose a soft-interactive
learning strategy that directly copies the weights learned from one
modality to another one without additional computational cost and
information loss, then fuses them on the top layer only with a simple
addition operation, as illustrated in Fig. 3(b). This would be capable of
learning the inter-modality corrections both effectively and efficiently
by reducing the gap between the modalities, yielding a smooth multi-
stream networks blending.

3.1.4. Label propagation module
Beyond the supervised learning, we also consider the unlabeled

samples by incorporating the label propagation (see Fig. 3(c)) into the
networks to further improve the model’s generalization. The main
workflow in the LP module is detailed as follows:

• We first train a classifier on the training set (SVMs used in our case)
and predict unlabeled samples by using the trained classifier. These
predicted results (pseudo-labels) can be regarded as the network
ground truth of unlabeled data stream, which is further considered
with real labels into the network training for a multitask learning.
• Next, we start to train our networks until convergence occurs. We
call this process as one-round network training. Once one-round
network training has been completed, the high-level features ex-
tracted from the top of the network (see Fig. 2) are used to update
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the pseudo-labels using the graph-based LP (Zhu et al., 2005). The
LP algorithm consists of the following two steps.
– Step 1: construct similarity matrix. The similarity matrix S be-
tween any two samples (Hong et al., 2015), e.g., xi and xj, either
labeled or unlabeled, is computed by

=
x

S (exp
|| ||

),i j
i j

,

2

2 (1)

where is a hyperparameter determined from the range of
[0.001, 0.01, 0.1, 1, 10, 100] by cross-validation on the training set.

– Step 2: propagate labels over all samples. Before carrying out LP, a
label transfer matrix (P), e.g., from the sample i to the sample j, is
defined as

=
=

i jP P
S

S
( ) ,i j

i j

k
N

i k
,

,

1 , (2)

where N is the number of samples. Assume that given M labeled
and N M unlabeled samples with C categories, a soft label
matrix ×Y N C is constructed, which consists of a labeled ma-
trix ×Yl

M C and a unlabeled matrix ×Yu
N M C( ) obtained by

one-hot encoding. Our goal is to update the matrix Y , we then
have the update rule in the t-th (t 1) iteration as follows: (1)
update Yt by PYt 1; (2) reset Yl

t in Yt using the original Yl as
=Y Yl

t
l; (3) repeat the steps (1) and (2) until convergence.

We re-feed these updated pseudo-labels, i.e., Yu into the next-round
network training. The workflow is run repeatedly until the pseudo-
labels are not changed any more. Note that we experimentally found
that three to four repetitions are usually enough, leading to the
model convergence.

3.2. Objective function

Let xSA and zSA be the input and output of the SA module, and then
we have

=
=
=
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where G is the generative subnetwork that consists of several encoder,
normalization (BN) (Ioffe and Szegedy, 2015) and dropout (Srivastava
et al., 2014) layers (see Fig. 3). Given the inputs of two modalities x IL

1

and x IL
2 in the IL module, its output (zIL) can be formulated by
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where MLP, namely multi-layer perception, holds a same structure with
G in Eq. (3), as illustrated in Fig. 3. We define the different modalities as
xi where i o t u{ , , } stands for the first modality, the second modality,
the unlabeled samples, and the corresponding l-th hidden layer as zi

l( ).
Accordingly, the network parameters can be updated by jointly opti-
mizing the following overall loss function.

= + + +L L L L L ,l pl rec adv (5)

where Ll is the cross-entropy loss for labeled samples while Lpl for
pseudo-labeled samples. In addition to the two loss functions that
connect the input data with labels (or pseudo-labels), we consider the
reconstruction loss (Lrec) for each modality as well as unlabeled sam-
ples.

= + +L x x x x x x|| || || || || || ,rec o o t t u u2
2

2
2

2
2 (6)

where xi denotes the reconstructed data of xi. For the adversarial loss
(Ladv), it acts on the SA module formulated based on GANs as

= + +
= +

L L L L
L log D log Dz z

,
max [ ( ( )) (1 ( ))],

adv adv
o

adv
t

adv
u

adv
i

D
i i

r
i i

f

i (7)

where Di represents the discriminator in adversarial training. Linking
with Eq. (3), =z z( )i

r
SA i
1 and =z z( )i

f
SA i
2 are a real/ fake pair of data

representation on the last layers of SA module.

Table 2
Network configuration in each layer of X-ModalNet. FC, Conv, and BN are abbreviations of fully connected, convolution, and batch normalization, respectively. The
symbols of ‘ ’ and ‘–’ represent the parameter sharing and no operations, respectively. Moreover, d1 and d2, denote the dimensions of MSI/ SAR and HSI, and C is the
number of class. Please note that the reconstruction happens after passing through the first block of prediction module.

X-ModalNet

Pathway Labeled MSI/ SAR (d1) Unlabeled MSI/ SAR (d1) Labeled HSI (d2)
Feature Extractor ×5 5 Conv + BN + Dropout ×5 5 Conv + BN + Dropout – FC Encoder + BN + Dropout

Tanh (32) Tanh (32) Tanh (160)
×3 3 Conv + BN + Dropout ×3 3 Conv + BN + Dropout – FC Encoder + BN + Dropout

Tanh (64) Tanh (64) Tanh (64)
SA Module FC Encoder + BN + Dropout FC Encoder + BN + Dropout – FC Encoder + BN + Dropout

Tanh (128) Tanh (128) Tanh (128)
FC Encoder + BN + Dropout FC Encoder + BN + Dropout – FC Encoder + BN + Dropout
Tanh (64) Tanh (64) Tanh (64)

IL Module FC Encoder + BN + Dropout FC Encoder + BN + Dropout – FC Encoder + BN + Dropout
Tanh (64) Tanh (64) Tanh (64)
FC Encoder + BN + Dropout FC Encoder + BN + Dropout – FC Encoder + BN + Dropout
Tanh (64) Tanh (64) Tanh (64)

Prediction FC Encoder + BN + Dropout FC Encoder + BN + Dropout – FC Encoder + BN + Dropout
Tanh (128) Tanh (128) Tanh (128)
FC Encoder + BN + Dropout FC Encoder + Softmax FC Encoder + BN + Dropout
Tanh (256) Tanh (256)
FC Encoder + BN + Dropout FC Encoder + BN + Dropout
Tanh (64) Tanh (64)
FC Encoder + Softmax FC Encoder + Softmax
Tanh (C) Tanh (C)

Reconstruction FC Encoder + BN FC Encoder + BN – FC Encoder + BN
Tanh (64) Tanh (64) Tanh (64)

×3 3 Conv + BN ×3 3 Conv + BN – FC Encoder + BN
Tanh (32) Tanh (32) Tanh (160)

×5 5 Conv + BN ×5 5 Conv + BN – FC Encoder + BN
Sigmoid (d1) Sigmoid (d1) Sigmoid (d2)
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3.3. Model architecture

The X-ModalNet starts with a feature extractor: two convolution
layers with 5×5 and 3×3 convolutional kernels for MSI or SAR pathway
and two fully-connected layers for HSI pathway, and then passes
through the SA module with two fully-connected layers. Following it,
an IL module with two fully-connected layers is connected over the
previous outputs. In the end, four fully-connected layers with an ad-
ditional soft-max layer are applied to bridge the hidden layers with one-
hot encoded labels. Table 2 details the network configuration for each
layer in X-ModalNet.

4. Experiments

4.1. Data description

We evaluate the performance of the X-ModalNet on two different
datasets. Fig. 4 shows the false-color images for both datasets as well as
the corresponding training and test ground truth maps, while scene
categories and the number of training and test samples are detailed in
Table 3. There are two things particularly noteworthy in our CML’ s
setting: (1) vector (or patch)-based input due to the sparse groundtruth
maps; (2) we assume that the HSI is present only in the process of training
and it is absent in the test phase.
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Fig. 4. Exemplary datasets for HSI-MSI and HSI-SAR: false-color images and corresponding training and test labels.
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4.1.1. Homogeneous HSI-MSI dataset
The HSI scene that has been widely used in many works (Hong

et al., 2017, 2020b) consists of ×349 1905 pixels with 144 spectral
bands in the wavelength range from 380 nm to 1050 nm at a ground
sampling distance (GSD) of 10 m (low spatial-resolution), while the
aligned MSI with the dimensions of × ×349 1905 8 is obtained at a GSD
of 2.5 m (high spatial-resolution).

Spectral simulation is performed to generate the low-spectral re-
solution MSI by degrading the reference HSI in the spectral domain
using the MS spectral response functions of Sentinel-2 as filters. Using
this, the MSI consists of ×349 1905 pixels with eight spectral bands at a
GSD of 2.5 m.

Spatial simulation is performed to generate the low-spatial resolution
HSI by degrading the reference HSI in the spatial domain using an
isotropic Gaussian point spread function, thus yielding the HSI with the
dimensions of × ×349 1905 144 at a GSD of 10 m by upsampling to the
MSI’s size.

4.1.2. Heterogeneous HSI-SAR dataset
The EnMap benchmark HSI covering the Berlin urban area is freely

available from the website1. This image consists of ×797 220 pixels
with a GSD of 30 m, and 244 spectral bands ranging from 400 nm to
2500 nm. According to the geographic coordinates, we downloaded the
same scene of SAR image from the Sentinel-1 satellite, with the size of

×1723 476 pixels at a GSD of 13 m and four polarimetric bands
(Yamaguchi et al., 2005). The used SAR image is dual-polarimetric SAR
data collected by interferometric wide swath mode. It is organized as a
commonly used four-component PolSAR covariance matrix (four bands)
(Yamaguchi et al., 2005). Note that we upsample the HSI to the same
size with the SAR image by the nearest-neighbor interpolation.

4.2. Implementation details

Our approach is implemented on the Tensorflow framework (Abadi
et al., 2016). The network configuration, to our knowledge, always
plays a critical role in a practical DL system. The model is trained on the
training set, and the hyper-parameters are determined using a grid
search on the validation set2. In the training phase, we adopt the Adam
optimizer with the “poly” learning rate policy (Chen et al., 2018). The

current learning rate can be updated by multiplying the base one with
(1 )iter

maxIter
power, where the base learning rate and power are set to

0.0005 and 0.98, respectively. We use the DAE to pretrain the sub-
networks for each modality to greatly reduce the training time of the
model and find a better local optimum easier. Also, the momentum is
set to 0.9.

To facilitate network training and reduce overfitting, BN and
dropout techniques are orderly used for all DL-based methods prior to
the activation functions. The model training ends up with 150 epochs
for the heterogeneous HSI-MSI dataset and 200 epochs for the hetero-
geneous HSI-SAR dataset with a minibatch size of 300. Both labeled and
unlabeled samples in SAR or MSI share the same network parameters in
the process of model optimization.

In the experiments, we found that when the unlabeled samples,
from neither training nor test sets, are selected at an approximated scale
with the test set, the final classification results are similar to that di-
rectly using test set. We have to admit, however, that the full use of
unlabeled samples enable further improvement in classification per-
formance, but we have to make a trade-off between the limited per-
formance improvement and exponentially increasing cost in data sto-
rage, transmission, and computation. Moreover, we expect to see the
performance gain when using these proposed modules, thereby de-
monstrating their effectiveness and superiority. As a result, we, for
simplicity, select the test set as the unlabeled set for all semi-supervised
compared methods for a fair comparison.

Furthermore, two commonly used indices: Pixel-wise Accuracy (Pixel
Acc.) and mean Intersection over Union (mIoU) are calculated to quan-
titatively evaluate the parsing performance by collecting all pixel-wise
predictions of the test set. Due to random initialization, both metrics
show the average accuracy and the variation of the results out of 10
runs.

4.3. Comparison with state-of-the-art

Several state-of-the-art baselines closely related to our task (CML)
are selected for comparison; they are.

(1) Baseline:We train a linear SVM classifier directly using original

Table 3
The number of training and test samples on two datasets.

Dataset HSI-MSI HSI-SAR

No. Class Training Test Class Training Test

1 Healthy Grass 537 699 Forest 1437 3249
2 Stressed Grass 61 1154 Residential 961 2373
3 Synthetic Grass 340 357 Industrial 623 1510
4 Tree 209 1035 Low Plants 1098 2681
5 Soil 74 1168 Soil 728 1817
6 Water 22 303 Allotment 260 747
7 Residential 52 1203 Commercial 451 1313
8 Commercial 320 924 Water 144 256
9 Road 76 1149 – – –
10 Highway 279 948 – – –
11 Railway 33 1185 – – –
12 Parking Lot1 329 904 – – –
13 Parking Lot2 20 449 – – –
14 Tennis Court 266 162 – – –
15 Running Track 279 381 – – –

Total 2832 12,197 Total 5702 13,946

Table 4
Quantitative performance comparison with baseline models on the HSI-MSI
dataset. The best one is shown in bold.

Methods Pixel Acc. (%) mIoU (%)

Baseline 70.51 57.84
CCA (Hardoon et al., 2004) 73.01 64.72
Unimodal DAE (Chen et al., 2014) 72.85 ± 1.2 62.75 ± 0.3
Bimodal DAE (Ngiam et al., 2011) 75.43 ± 0.6 67.67 ± 0.1
Bimodal SDAE (Silberer et al., 2017) 79.51 ± 1.7 69.62 ± 0.3
MDL-CW (Rastegar et al., 2016) 83.27 ± 1.0 74.60 ± 0.3
Corr-AE (Feng et al., 2014) 80.49 ± 1.2 70.85 ± 0.2
CorrNet (Chandar et al., 2016) 82.66 ± 0.8 73.48 ± 0.2
X-ModalNet 88.23 ± 0.7 80.31 ± 0.2

Table 5
Quantitative performance comparison with baseline models on the HSI-SAR
datasets. The best one is shown in bold.

Methods Pixel Acc. (%) mIoU (%)

Baseline 43.91 18.70
CCA (Hardoon et al., 2004) 36.66 12.04
Unimodal DAE (Chen et al., 2014) 51.51 ± 0.5 29.32 ± 0.2
Bimodal DAE (Ngiam et al., 2011) 56.04 ± 0.5 34.13 ± 0.2
Bimodal SDAE (Silberer et al., 2017) 59.27 ± 0.6 37.78 ± 0.2
MDL-CW (Rastegar et al., 2016) 62.51 ± 0.8 42.15 ± 0.1
Corr-AE (Feng et al., 2014) 60.59 ± 0.5 39.12 ± 0.3
CorrNet (Chandar et al., 2016) 64.65 ± 0.7 44.25 ± 0.3
X-ModalNet 71.38 ± 1.0 54.02 ± 0.3

1 http://doi.org/10.5880/enmap.2016.002
2 Ten replications are conducted to randomly split the original training set

into the new training and validation sets with the percentage of 8:2 to de-
termine the network’s hyperparameters.
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pixel-based MSI or SAR features. Note that the hyperparameters in SVM
are determined by 10-fold cross-validation on the training set.

(2) Canonical Correlation Analysis (CCA) (Hardoon et al., 2004):
We learn a shared latent subspace from two modalities on the training
set, and project the test samples from any one of the two modalities into
the subspace. This is a typical cross-modal feature learning. Finally, the
learned features are fed into a linear SVM. We used the code from the
website3.

(3) Unimodal DAE (Chen et al., 2014): This is a classical deep
autoencoder. We train a DAE on the target-modality (MSI or SAR) in a
unsupervised way, and finely tune it using labels. The hidden re-
presentation of the encoder layer is used for final classification. The
code we used is from the website4.

(4) Bimodal DAE (Ngiam et al., 2011): As a DL’s pioneer to multi-
modal application, it learns a joint feature representation over the en-
coder layers generated by AEs for each modality.

(5) Bimodal SDAE (Silberer et al., 2017): This is a semi-supervised
version for Bimodal DAE by considering the reconstruct loss of all un-
labeled samples for each modality and adding an additional soft-max
layer over the encoder layer for those limited labeled data.

(6) MDL-CW (Rastegar et al., 2016): A end-to-end multimodal
network is trained with cross weights acted on the two-stream sub-
networks for more effective information blending.

(7) Corr-AE (Feng et al., 2014): A coupled AEs are first used to learn
a shared high-level feature representation by enforcing similarity con-
straint between the encoder layers of two modalities. The learned fea-
tures are then fed into a classifier.

(8) CorrNet (Chandar et al., 2016): Similar to Corr-AE, AE is re-
sponsible for extracting features of each modality, while CCA serves as
a link with the features by maximizing their correlations. The code is
available from the website5.

4.3.1. Results on the homogeneous datasets
Table 4 shows the quantitative performance comparison in terms of

Pixel Acc. and mIoU. Limited by the feature diversity, the baseline
yields a poor classification performance, while there is a performance
improvement (about 2%) in the unimodal DAE due to the powerful
learning ability of DL-based techniques. For the homogeneous HSI-MSI
correspondences, the linearized CCA is more likely to catch the shared
features and obtains the better classification results. The features can be
better fused over the hidden representations of two modalities. There-
fore, the bimodal DAE improves the performance by 2% on the basis of
CCA’s. The accuracy of bimodal SDAE can further increase to around
79%, since it aims at training an end-to-end multimodal network to

generate more discriminative features. Different from previous strate-
gies, Corr-AE and CorrNet couple two subnetworks by enforcing the
structural measurement on hidden layers, such as Euclidean similarity
and correlation, which allows a more effective pixel-wise classification.
The MDL-CW with learning cross weights can facilitate the multimodal
information fusion, thus achieving better classification results than
Corr-AE and CorrNet. As expected, X-ModalNet outperforms these state-
of-the-art methods, demonstrating its superiority and effectiveness with
a large improvement of at least 6% Pixel Acc. and mIoU over CorrNet
(the second best method).

4.3.2. Results on the heterogeneous datasets
Similar to the former dataset, we evaluate the performance for the

Heterogeneous HSI-SAR scene quantitatively. Two assessment indices
(Pixel Acc. and mIoU) for different algorithms are summarized in
Table 5. There is a basically consistent trend in performance improve-
ment of different algorithms. That is, the performance of X-ModalNet is
significantly superior to that of others, and the methods with the hy-
perspectral information perform better than those without one, such as
Baseline and Unimodal DAE. It is worth noting that the proposed X-
ModalNet brings increments of about 9% Pixel Acc. and 10% mIoU on
the basis of CorrNet. Moreover, the CCA fails to linearly represent the
heterogeneous data, leading to a worse parsing result and even lower
than the baseline. Additionally, the gap (or heterogeneity) between SAR
and optical data can be effectively reduced by mutually learning
weights. This might explain the case that the MDL-CW observably ex-
ceeds most compared methods without such interactive module (nearly
20% over baseline), e.g., Bimodal DAE and its semi-supervised version
(Bimodal SDAE) as well as CorrNet.

4.4. Visual comparison

Apart from quantitative assessment, we also make a visual com-
parison by highlighting a salient region overshadowed by the cloud on
the Houston2013 datasets. As shown in Fig. 5, our method is capable of
identifying various materials more effectively, particularly for the ma-
terial Commercial in the upper-right of the predicted maps. Besides, a
trend can be figured out, that is, the methods with the input of multi-
modalities achieve more smooth parsing results compared to those with
the input of single modalities.

Similarly, we visually show the classification maps of those com-
parative algorithms in a region of interest in the EnMap datasets, as
shown in Fig. 6. We can see that our X-ModalNet shows a more com-
petitive and realistic parsing result, especially in classifying Soil and
Plants, which is more approaching to the real scene.

4.5. Ablation studies

We analyze the performance gain of X-ModalNet by step-wise

Fig. 5. Classification maps of ROI on HSI-MSI datasets. The ground truth in this highlighted area is manually labelled.

3 https://github.com/CommonClimate/CCA
4 http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial
5 https://github.com/apsarath/CorrNet
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adding the different components (or modules). Table 6 lists a pro-
gressive performance improvement by gradually embedding different
modules, while Fig. 7 correspondingly visualizes the learned features in
the latent space (top encoder layer). It is clear to observe that succes-
sively adding each component into the X-ModalNet is conducive to a

more discriminative feature generation.
We also investigate the importance of dropout and BN techniques in

avoiding overfitting and improving network performance. As can be
seen in Table 6, turning off the dropout would hinder X-ModalNet from
generalizing well, yielding a performance degradation. What is worse is
that the classification accuracy without BN reduces sharply. This could
result from low-efficiency gradient propagation, thereby hurting the
learning ability of the network. Moreover, we can observe from Table 6
that the classification performance without any proposed modules is
limited, only yielding about 83.14% and 64.44% Pixel Acc. on the two
datasets. It is worth noting that the results achieve an obvious im-
provement (around 2%~3%) after plugging the IL module. By introdu-
cing the semi-supervised mechanism, our LP module can bring incre-
ments of 1.5% and 2% Pixel Acc. on the basis of only using the IL module
for HSI-MSI and HSI-SAR, respectively. Remarkably, when adding the
SA module over the IL and LP modules in networks, our X-ModalNet
behaves superiorly and obtains a further dramatic improvement in
classification accuracies. These, to a great extent, demonstrate the ef-
fectiveness and superiority of several proposed modules as well as their
positive effects on the classification performance.

Fig. 6. Classification maps of ROI on HSI-SAR datasets. The OpenStreetMap (Haklay and Weber, 2008) is used as the ground truth generato.r for this area.

Table 6
Ablation analysis of the X-ModalNet with a combination of different modules in
term of Pixel Acc. on two datasets. Moveover, importance analysis in the pre-
sence and absence of BN and dropout operations is discussed as well.

Methods BN Dropout IL LP SA Pixel Acc. (%)

HSI-MSI HSI-SAR

X-ModalNet × × × 83.14 ± 0.9 64.44 ± 1.1
X-ModalNet × × 85.07 ± 0.8 68.73 ± 0.8
X-ModalNet × 86.58 ± 1.0 70.19 ± 0.8
X-ModalNet 88.23 ± 0.7 71.38 ± 1.0
X-ModalNet × × 80.33 ± 0.5 62.47 ± 0.7
X-ModalNet × 81.94 ± 0.6 64.10 ± 0.9
X-ModalNet × 85.10 ± 0.6 67.34 ± 0.8

Fig. 7. t-SNE visualization of the learned multimodal features in the latent space using X-ModalNet with different modules on the two different datasets.

D. Hong, et al. ISPRS Journal of Photogrammetry and Remote Sensing 167 (2020) 12–23

21



4.6. Robustness to noises

Neural networks have shown their vulnerability to adversarial
samples generated by slight perturbation, e.g., imperceptible noises. To
study the effectiveness of our SA module against noise or perturbation
attack, we simulate the corrupted input by adding Gaussian white
noises with different signal-to-noise-ratios (SNRs) ranging from 10 dB
to 40 dB at a 10 dB interval. Fig. 8 shows a quantitative comparison in
term of Pixel Acc. before and after triggering the SA module.

5. Conclusion

In this paper, we investigate the cross-modal classification task by
utilizing multimodal satellite or aerial images (RS data). In reality, the
HSI is only able to be collected in a locally small area due to the lim-
itations of the imaging system, while MSI and SAR are openly available
on a global scale. This motivate us to learn to transfer the HSI knowl-
edge into large-scale MSI or SAR by training the model on both mod-
alities and predict only on one modality. To address the CML’s issue in
RS, we propose a novel DL-based model X-ModalNet, with two well-
designed components (IL and SA modules) to effectively learn a more
discriminative feature representation and robustly resist the noise at-
tack, respectively, and with an iteratively updating LP mechanism for
further improving the network performance. In the future work, we
would like to introduce the physical mechanism of spectral imaging
into the network learning for earth observation tasks.
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Fig. 8. Resistance analysis to noise attack using the proposed X-ModalNet with and without SA module on the two datasets.
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