Ilyas, Muhammad Umer und Kabir, Mohammad Rizviul (2020) Modelling high temperature deformation of lamellar TiAl crystal using strain-rate enhanced crystal plasticity. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 788, e139524. Elsevier. doi: 10.1016/j.msea.2020.139524. ISSN 0921-5093.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://www.sciencedirect.com/science/article/abs/pii/S0921509320305955?via%3Dihub
Kurzfassung
Multi-phase lamellar gamma -TiAl alloys are highly anisotropic and rate sensitive. At high temperature, the strain rate sensitivity (SRS) increases, which eventually influences the yield behaviour of the alloy. With increasing temperature, the onset of yield changes anomalously showing an increasing or sometimes a decreasing trend. This anomalous behaviour depends on alloy chemistry, lamellar microstructure and anisotropy due to lamellar orientations. To capture the strain rate sensitive deformation behaviour over a wide temperature range and to understand distinct nature of yield anisotropy, a new formulation of the strain rate sensitivity (SRS) expressed by a temperature dependent exponent has been proposed within the framework of the classical power-law based visco-plastic Crystal Plasticity Finite Element Method (CPFEM). In the presented formulation, the evolution of SRS parameter was deduced from laws of thermally activated dislocation motion to obtain temperature-enhanced strain rate sensitivity. Moreover, a dislocation pile-up assisted mechanical threshold stress was incorporated to obtain an anomalous yield response. The model was validated for a lamellar PST-TiAl, which is a single crystal consisting of gamma-TiAl and alpha2-Ti3Al lamellar phases. Detailed predictive numerical analysis was performed for an in-depth understanding of temperature enhanced strain-rate sensitivity during local deformation behaviour of TiAl alloy based on slip activities.
elib-URL des Eintrags: | https://elib.dlr.de/137556/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Modelling high temperature deformation of lamellar TiAl crystal using strain-rate enhanced crystal plasticity | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 5 Mai 2020 | ||||||||||||
Erschienen in: | Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 788 | ||||||||||||
DOI: | 10.1016/j.msea.2020.139524 | ||||||||||||
Seitenbereich: | e139524 | ||||||||||||
Verlag: | Elsevier | ||||||||||||
ISSN: | 0921-5093 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Crystal Plasticity, Strain-rate sensitive behaviour, Lamellar TiAl alloy, High temperature deformation, Finite element modelling | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||
HGF - Programmthema: | Antriebssysteme | ||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||
DLR - Forschungsgebiet: | L ER - Engine Research | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Virtuelles Triebwerk und Validierungsmethoden (alt) | ||||||||||||
Standort: | Köln-Porz | ||||||||||||
Institute & Einrichtungen: | Institut für Werkstoff-Forschung > Experimentelle und numerische Methoden | ||||||||||||
Hinterlegt von: | Bartsch, Dr.-Ing. Marion | ||||||||||||
Hinterlegt am: | 23 Nov 2020 10:58 | ||||||||||||
Letzte Änderung: | 30 Okt 2023 13:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags