Stark, Thomas und Wurm, Michael und Zhu, Xiao Xiang und Taubenböck, Hannes (2020) Satellite-Based Mapping of Urban Poverty With Transfer-Learned Slum Morphologies. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (13), 5251 -5263. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2020.3018862. ISSN 1939-1404.
PDF
- Verlagsversion (veröffentlichte Fassung)
6MB |
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/9174807
Kurzfassung
In the course of global urbanization, poverty in cities has been observed to increase, especially in the Global South. Poverty is one of the major challenges for our society in the upcoming decades, making it one of the most important issues in the Sustainable Development Goals defined by the United Nations. Satellite-based mapping can provide valuable information about slums where insights about the location and size are still missing. Large-scale slum mapping remains a challenge, fuzzy feature spaces between formal and informal settlements, significant imbalance of slum occurrences opposed to formal settlements, and various categories of multiple morphological slum features. We propose a transfer learned fully convolutional Xception network (XFCN), which is able to differentiate between formal built-up structures and the various categories of slums in high-resolution satellite data. The XFCN is trained on a large sample of globally distributed slums, located in cities of Cape Town, Caracas, Delhi, Lagos, Medellin, Mumbai, Nairobi, Rio de Janeiro, São Paulo, and Shenzhen. Slums in these cities are greatly heterogeneous inits morphological feature space and differ to a varying degree to formal settlements. Transfer learning can help to improve segmentation results when learning on a variety of slum morphologies, with high F1 scores of up to 89%.
elib-URL des Eintrags: | https://elib.dlr.de/137087/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Satellite-Based Mapping of Urban Poverty With Transfer-Learned Slum Morphologies | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 24 August 2020 | ||||||||||||||||||||
Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1109/JSTARS.2020.3018862 | ||||||||||||||||||||
Seitenbereich: | 5251 -5263 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
Name der Reihe: | Paving the Way for the Future of Urban Remote Sensing | ||||||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Fully convolutional network (FCN), remote sensing, slum mapping, transfer learning, urban poverty, Xception | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Stark, Thomas | ||||||||||||||||||||
Hinterlegt am: | 09 Nov 2020 15:36 | ||||||||||||||||||||
Letzte Änderung: | 28 Nov 2023 07:26 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags