elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Satellite-Based Mapping of Urban Poverty With Transfer-Learned Slum Morphologies

Stark, Thomas und Wurm, Michael und Zhu, Xiao Xiang und Taubenböck, Hannes (2020) Satellite-Based Mapping of Urban Poverty With Transfer-Learned Slum Morphologies. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (13), 5251 -5263. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2020.3018862. ISSN 1939-1404.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
6MB

Offizielle URL: https://ieeexplore.ieee.org/abstract/document/9174807

Kurzfassung

In the course of global urbanization, poverty in cities has been observed to increase, especially in the Global South. Poverty is one of the major challenges for our society in the upcoming decades, making it one of the most important issues in the Sustainable Development Goals defined by the United Nations. Satellite-based mapping can provide valuable information about slums where insights about the location and size are still missing. Large-scale slum mapping remains a challenge, fuzzy feature spaces between formal and informal settlements, significant imbalance of slum occurrences opposed to formal settlements, and various categories of multiple morphological slum features. We propose a transfer learned fully convolutional Xception network (XFCN), which is able to differentiate between formal built-up structures and the various categories of slums in high-resolution satellite data. The XFCN is trained on a large sample of globally distributed slums, located in cities of Cape Town, Caracas, Delhi, Lagos, Medellin, Mumbai, Nairobi, Rio de Janeiro, São Paulo, and Shenzhen. Slums in these cities are greatly heterogeneous inits morphological feature space and differ to a varying degree to formal settlements. Transfer learning can help to improve segmentation results when learning on a variety of slum morphologies, with high F1 scores of up to 89%.

elib-URL des Eintrags:https://elib.dlr.de/137087/
Dokumentart:Zeitschriftenbeitrag
Titel:Satellite-Based Mapping of Urban Poverty With Transfer-Learned Slum Morphologies
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Stark, ThomasThomas.Stark (at) dlr.dehttps://orcid.org/0000-0002-6166-7541NICHT SPEZIFIZIERT
Wurm, Michaelmichael.wurm (at) dlr.dehttps://orcid.org/0000-0001-5967-1894NICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiao.zhu (at) dlr.dehttps://orcid.org/0000-0001-5530-3613NICHT SPEZIFIZIERT
Taubenböck, Hanneshannes.taubenboeck (at) dlr.dehttps://orcid.org/0000-0003-4360-9126NICHT SPEZIFIZIERT
Datum:24 August 2020
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1109/JSTARS.2020.3018862
Seitenbereich:5251 -5263
Verlag:IEEE - Institute of Electrical and Electronics Engineers
Name der Reihe:Paving the Way for the Future of Urban Remote Sensing
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:Fully convolutional network (FCN), remote sensing, slum mapping, transfer learning, urban poverty, Xception
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Stark, Thomas
Hinterlegt am:09 Nov 2020 15:36
Letzte Änderung:28 Nov 2023 07:26

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.