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Satellite-Based Mapping of Urban Poverty With
Transfer-Learned Slum Morphologies

Thomas Stark”, Michael Wurm ", Xiao Xiang Zhu

Abstract—In the course of global urbanization, poverty in cities
has been observed to increase, especially in the Global South.
Poverty is one of the major challenges for our society in the
upcoming decades, making it one of the most important issues
in the Sustainable Development Goals defined by the United Na-
tions. Satellite-based mapping can provide valuable information
about slums where insights about the location and size are still
missing. Large-scale slum mapping remains a challenge, fuzzy
feature spaces between formal and informal settlements, significant
imbalance of slum occurrences opposed to formal settlements, and
various categories of multiple morphological slum features. We
propose a transfer learned fully convolutional Xception network
(XFCN), which is able to differentiate between formal built-up
structures and the various categories of slums in high-resolution
satellite data. The XFCN is trained on a large sample of globally
distributed slums, located in cities of Cape Town, Caracas, Delhi,
Lagos, Medellin, Mumbai, Nairobi, Rio de Janeiro, Sao Paulo, and
Shenzhen. Slums in these cities are greatly heterogeneous in its mor-
phological feature space and differ to a varying degree to formal
settlements. Transfer learning can help to improve segmentation
results when learning on a variety of slum morphologies, with high
F'1 scores of up to 89%.

Index Terms—Fully convolutional network (FCN), remote
sensing, slum mapping, transfer learning, urban poverty, Xception.

1. INTRODUCTION

ORE than 600 million people live in extreme poverty,
M according the Sustainable Development Goals Report
[1]. The credibility of these statistics, however, is in doubt [2],
as a systematic global inventory of slums is nonexistent. Al-
though methods for mapping urban poverty in earth observation
data have improved tremendously over the past few years, the
location of many smaller and lesser-known slum settlements
is still unknown to policy makers and NGOs [3]. In the Global
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South especially, the process of rapid urbanization can overstrain
sustainable city planning [4]; in other words, cities are failing
to provide the necessary living spaces for their population. The
consequence is the development of informal makeshift shelters,
resulting in highly dynamic patterns in the urban living spaces
of the poor. The perpetual migration into the cities, combined
with insufficient housing for low-income groups triggers the
formation of these informal settlements, where people looking
for job opportunities in the city can find a place to live [1],
[5]. Prominent slums like Dharavi in Mumbai and Kibera in
Nairobi cannot be denied by authorities and are often tolerated
by the local government, but slum dwellers living in smaller
and more unknown slums represent a “hidden society”—They
often fear eviction and relocation because they are located in
endangered areas and are exposed to natural hazards or because
city governments wish to upgrade these areas [6], [7].

Squatter settlements, favelas, huts, villas miseria, bidonvilles,
urban villages, slums, informal settlement, and many other
names are typically used, depending on the global location,
to refer to urban poor areas. In general, all these names em-
phasize negative characteristics and imply nonaffiliation from
a city’s point of view [8]. Additionally, all terms for poor
urban areas, while generally understood, contain ambiguities
in their morphological appearance, ranging from very deprived
areas to lesser ones [7], [9]. This diversity can, to some extent,
be described by regional differences, cultural context, and the
building material available for construction.

In this study, urban poverty areas are addressed on a large
scale, including highly variable morphological slum features
from 10 cities in the Global South. Thus, a uniform definition of
the exact urban morphology of poverty is infeasible. While there
are many discussions on the characterizations and nomenclature
of urban poverty, in the context of this study, we refer to all urban
poverty areas, with different physical morphologies compared
to formal settlements, by the term slums for naming purposes.

Mapping these settlements is not a trivial task and certain
challenges have to be addressed. The first challenge can be
described as interurban variability, where morphological slum
features can change depending on their particular geographical
location. But these morphological slum features are conceptu-
ally fuzzy, do not have international consensus, and are, thus,
very difficult to describe. The examples in Fig. 1 reveal that
morphologic appearances of poverty can be different in every
city, ranging from very dense low-rise shacks in Mumbai [see
Fig. 1(a)] to three-story buildings in Medellin [see Fig. 1(d)].
A second challenge, complicating the already complex task
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Fig. 1.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

i..h -
7 )

Comparison of the inter- and intraurban variability of slums. Image (a) shows a typical slum in Mumbai, India, consisting of very densely built shacks.

The images (b) and (c) in the middle show two very different slums in Lagos, Nigeria: poverty areas in the city’s periphery as well as the downtown floating slum
of Makoko in the Lagoon of Lagos. Image (d) depicts a slum in Medellin, Colombia, with three-story buildings made of concrete. Images from Google Street View

provide additional close-up information on the local built-up structure.

of interurban variability, shows that slums can also feature
an intraurban variability within the same city [8], [10]. These
varying intraurban morphological slum features can be seen in
the middle of Fig. 1(b) and (c). Although the slum areas in Lagos
are located within the same city, their morphological appearance
is inherently different. The very dense swimming shacks of the
Makoko slum in Lagos [see Fig. 1(c)] and the less dense slums in
the peripheral area with an almost regular road network shown
in Fig. 1(b) demonstrate intraurban variability.

Fig. 1 also shows that deprived poverty settlements often
come with some variation in the previously mentioned slum
features. Fuzzy borders and similar morphological features on
formal built-up structures can lead to a complex super state
of the affiliation with a slum category. According to the work
in[8], characteristic features for slums are settlements of in-
credible density, complex building structures, and significantly
different appearances from their formal counterparts. In [3],

slums are interpreted in five dimensions of their morphologic
appearance: complex building geometry, high building density,
irregular or nonexistent road network, roofing material, and site
characteristics. These slums are described by the morphological
appearance and can contain a variation of their aforementioned
features. Additionally, in all examples in Fig. 1, the street layout
is highlighted, making the difference between an orderly planned
road structure in the formal settlements, a more irregular layout,
or even a nonexistent road network more visible in the slum
areas. Thus, besides the morphology of individual buildings,
the street network can be seen as a key feature for differentiating
between formal settlements from slums.

In this study, we aim to address the challenge of large-scale
slum mapping featuring varying slum morphologies in the
context of an applicable mapping approach. Thus, 10 globally
distributed cities are selected: Cape Town (South Africa), Cara-
cas (Venezuela), Delhi and Mumbai (India), Lagos (Nigeria),
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Medellin (Colombia), Nairobi (Kenya), Rio de Janeiro and
Sao Paulo (Brazil), and Shenzhen (China), featuring different
cultural regions, topographies, and building morphologies. The
perception of people and the spatial structure is subjective [11].
This is also the case with slums, i.e.: What can be called a slum,
since the boundaries to formal settlements are often fuzzy. We
apply the categorization of slums as presented in [8], as we seek
to integrate various morphologies into our mapping experiments.
In [8], slums are grouped into multiple representations using five
variables that describe their morphologies. The most extreme
slum morphologies, meaning high building densities, nonuni-
form building orientation, high heterogeneity of the slum build-
ings themselves, very small building sizes, and low-rise building
heights, can be found in the slums of Mumbai, Caracas, and
Nairobi. This first category of slums, which is referred to as C1,
reflects stark morphological differences from formal settlements
and correspond to the greatest possible physical assumption of
a morphological slum. A second category of slums Cy can be
formed if the slum morphology deviates in a small capacity
from the features of C. These slum types can be found in
Delhi, Medellin, Lagos, and to an extreme in the urban villages
of Shenzhen: There, slums are still very dense and disregard
orderly building alignments, but their building heights are often
more than one story high and feature a variation of regular and
irregular road layouts in the slum settlements. In some cases,
morphological slum features deviate more significantly from
the typical assumption of the complex state of slum settlements.
This third category C5 of slums can be found in Cape Town, Rio
de Janeiro, and Sao Paulo. In these cities, slum settlements can
sometime even share urban morphologies found in their formal
counterparts. The Township Victoria Merge in Cape Town and
the Favela Paraispolis in Sdo Paulo feature a regular road layout
and less heterogeneous building alignments, making these areas
difficult to categorize as C'y or Cs. Here, the morphology of the
slums is a mixture of the slum features typical of the first two
groups and formal settlement structures.

The aim of this article is to systematically test transfer learning
techniques using a fully convolutional network (FCN) to map
slums of varying morphologic appearances from knowledge
learned in different geographical and cultural settings. By using
a large-scale globally distributed dataset of slums, the FCN
is better able to generalize and, thus, is able to map slums in
areas where this was previously not possible on high-resolution
remote sensing data. We want to analyze the extent of interurban
variability of slum settlements on a global scale and understand
if it is possible to learn from features of varying morphological
poverty representations. For this task, we specifically design a
fully convolutional Xception network (XFCN) to train on mul-
tichannel remote sensing data. In this study, the XFCN is tested
on its transfer learning capabilities of different slum categories,
for comparative studies of the Xception model in regards to
other convolutional neural networks (CNNs), we suggest the
following papers [12]-[14]. As an additional option, auxiliary
data in the form of the road layout from Open Street Map can
be used as an extended input layer to support the model in its
learning task.
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The remainder of this article is structured as follows: In
Section II, background on poverty mapping and the state of the
art of semantic segmentation is reviewed. In Section III, the
methodology of our proposed approach using a XFCN is pre-
sented. In Section IV, the remote sensing and auxiliary datasets
including preprocessing steps are shown and the experimental
setup is introduced. In Section V, the results of all experiments
are shown. In Section VI, the results of all experiments are
discussed with respect to their implication on poverty mapping.
Finally, Section VII concludes this article.

II. BACKGROUND AND RELATED WORK

Deprived poverty settlements feature a characteristic struc-
tural type in many cities of the Global South. Various approaches
to detecting slums, ranging from machine learning techniques to
object-based solutions, are presented in Section II-A. In the past
five years, deep learning procedures for semantic segmentation
of slums have been able to surpass traditional mapping methods
in their ability to achieve mapping accuracies. These techniques
for pixelwise classification are presented in Section II-B.

A. Mapping Urban Poverty With Satellite Data

To describe physical slum characteristics using remote sens-
ing data, the morphological features of urban poverty need to
be well understood. Thus, the data must be able to represent
the physical properties of slum settlements. For example, since
many slum buildings are considerably below 100 m? and slum
areas often only have a size of 1 ha [10], [15], [16], the related
images for their identification require a high spatial resolution.
Moreover, roof surfaces are frequently not homogeneous in
shape and color; when using high-resolution data, some of the
roof pixels will consist of mixed roofing materials. Thus, a spe-
cific geometric resolution is needed to capture the morphological
poverty features. At the same time, when talking about mapping
poverty in multiple globally distributed cities, data availability
also needs to be taken into consideration. This favors both
the Copernicus mission Sentinel-2 and Planet Labs data from
the PlanetScope satellite as optical sensor solutions, since both
products are globally available. In [17], Sentinel-2 data were
used to map slums and [18] compared Sentinel-2 data and very
high resolution data. Both studies conclude that while mapping
urban poor areas are possible in high-resolution 10-m ground
sampling distance, it is a very limiting factor, especially consid-
ering mapping smaller slum patches. Given this circumstance,
PlanetScopes 3-m geometric resolution strikes a perfect balance
between data availability and high spatial resolution.

In the related scientific literature on slum mapping, various
methods have been presented. In [17] and [19], the studies
aimed at identifying complete slum patches using a combination
of machine learning and textural feature engineering methods.
Other work has been done using socioeconomic data and spatial
features to determine income levels of slum settlements on
a neighborhood level [9], [20], [21]. In [22], only the street
network was used to predict slum areas in a combination of
traditional machine learning and artificial neural networks. In
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[71, [8], and [16], poor urban areas were analyzed on the level of
individual buildings using an object-based approach to identify
the varieties of slums and their temporal changes.

In the past five years, using deep learning techniques has be-
come a popular trend, as it has been shown that mapping accura-
cies improved rule-based approaches significantly for mapping
slum patches [18]. In [23] and [24], nighttime light intensities
were used as a proxy for poor urban areas to transfer learn a
CNN to high-resolution remote sensing data. In [25]-[27], fully
convolutional neural networks (FCNs) were used to map slums
on either high-resolution or very high-resolution data, whereas
Wurm et al. [18] and Stark et al. [28] used different transfer
learning techniques to map slums between different satellite
sensors in the same city and between geographically separated
cities, respectively. The authors concluded that not only more
data, but also a novel deep learning architecture and more
rigorous regularization is necessary for robust segmentation of
slums on a large scale.

B. Semantic Segmentation Using Deep Learning

Semantic segmentation means understanding an image at a
pixel level. While traditional CNN aim to classify a whole image
patch, FCNs classify each pixel of an image, offering more
information about the area and shape of the target class. First
introduced in [29], FCNs replace the fully connected layers of
a standard CNN with convolutional layers and dilated convolu-
tions for upsampling to the original input dimensions. In the past
five years, more advanced methods for semantic segmentation
using deep learning techniques have been explored. Improve-
ments in the backbone architecture as well as the upsampling
phase can have been reported. Both U-Net [30] and SegNet
[31]improved upsampling techniques, introducing long distance
skip connections and convolutions during the upsampling phase,
for semantic segmentation. While the original FCN in [29]
used vggl6 architecture [32], today deeper and more efficient
backbone models are available. GoogLeNet [33] and its Incep-
tion versions [34], [35] introduced deeper and more advanced
implementations using network in network approaches, whereas
ResNet variants [36] introduced skip connections and heavy
batch normalization. Currently, not only the depth of the network
but also its efficiency is major factor to be taken into consid-
eration. While recently, the trend has been to go deeper with
convolutions, networks like Xception [12], and EfficientNets
[37] can outscore deeper variants while having fewer parameters
to train.

Specific improvements for semantic segmentation in re-
mote sensing data could be achieved in [38], where relation-
augmented FCNs are used, in [39], with a gated graph CNN
and structured feature embeddings, and in [40], by fusing very
high-resolution data with auxiliary data. Training a CNN from
scratch requires a significant amount of data and processing
power. It is also very time consuming [41], which is why fine-
tuning or transfer learning approaches are often used in order
to handle less training data or transfer knowledge from a source
domain to a target domain. Fine-tuning a CNN from a large
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dataset, such as ImageNet [42], Coco [43], or Pascal VOC [44],
was very popular in the first stages of adapting deep learning
techniques into to the remote sensing domain [41], [45], but
feature transformation from often low-quality natural images
to multichannel remote sensing data means sacrificing valuable
data information in the spectral and radiometric resolution of the
satellite images [41]. Therefore, training a CNN from scratch
specifically on remote sensing data often yields better results
[46]-[49]. To take full advantage of the data richness present in
remote sensing data, training from scratch offers great potential
in learning high-quality feature representation when enough data
and computational power are available.

III. PROPOSED APPROACH

CNNs pretrained on natural images most often limit the
depth of the input image to just three channels, and thus,
the high-quality multispectral data of remote sensing imagery
are neglected. To exploit the full spectral depth of optical satellite
sensors, CNNs can be trained on multispectral data from scratch
on any number of input channels, but training these networks can
be very computationally expensive [41]. Specific architectures
can strike a balance on being as deep as possible, while at the
same time, an efficient approach of implementing convolutions
can save parameters, making the model more light weight and
easier to train. Both these effects are present in the Xception
[12] network, which is an evolution of the Inception models
[33]-[35]. We propose using a modified Xception network as
the backbone architecture to create a FCN, where a fully con-
volutional flow for segmentation follows the exit flow of the
Xception network.

A. Backbone Architecture

The Xception network gets its name from the modules that
make up the backbone architecture. The main idea behind these
modules is to decouple cross-channel and spatial correlations to
shrink the parameter size of the model. The Xception module
is an evolution of the modules that are present in the Incep-
tion networks and take this principle to the extreme, hence
its name. Fig. 2 shows an Xception module in detail. First,
a depth/channel-wise 3 x 3 convolution is performed on all
input dimensions; afterward, a pointwise 1 x 1 convolution
maps the data to the desired output space. Thus, compared
with conventional convolutions, we do not need to perform
convolution across all output channels. This means that a number
of connections are fewer and the model is lighter.

The Xception architecture is a linear stack of depthwise
separable convolution layers with residual connections. This
makes the model very easy to define and modify. The complete
architecture, depicted in Fig. 3, consists of multiple entities. The
entry flow is split into multiple blocks. The first block employs a
2-D convolution at stride 2 and valid padding, whereas the sec-
ond 2-D convolution uses same padding and no stride, reducing
the input dimension from 299 x 299 X ngiy to 147 x 147 x 64.
The remaining blocks use a similar sequence of two Xception
modules, where the second module is accompanied by a max
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Fig. 2. Xception module in comparison to a standard 2-D convolution for

the first depthwise separable convolution within the XFCN. After a depthwise
convolution on the number of input parameters, a pointwise convolution follows,
resulting in the desired number of output features.

pooling operation, which is fused with a residual connection
from the input tensor of the previous Xception module at a
stride of 2. The middle flow successively employs three Xcep-
tion modules eight times while keeping its tensor dimension
constant at 19 x 19 x 728. Finally, within the exit flow, two
blocks of each two Xception modules round up the Xception
backbone architecture, where the first of the two blocks is fused
with a residual skip connection. During the complete XFCN,
all convolutions are a combination of batch normalization, a
ReLU activation function, and a dropout layer. In total, the
XFCN consists of 41 convolutional layers, including residual
skip connections in the backbone.

B. Upsampling

The decoder of the XFCN uses an upsampling approach
similar to the original FCN [29]. In our XFCN, five dilated
convolutions are used to upscale the output of the exit flow
with its dimension of 10 x 10 x 2048 back to the original input
height and width dimension. A softmax classifier is used to
produce a single prediction tensor with a size of 299 x 299 x 1.
The decoder uses four long-distance skip connections fused with
the fitting counterpart of the entry flow to preserve low-level fea-
tures and a padding of two to ensure a fine-grained upsampling
performance, as seen in the upscale flow of Fig. 3.

IV. DATA AND EXPERIMENTAL SETUP

The XFCN introduced in Section III is specifically set up
to map slums in high-resolution remote sensing data. In areas
of low slum coverage especially, a transfer learning approach
is necessary to train the XFCN on multidimensional remote
sensing data. In this section, we present the remote sensing
data used in this article, the sampling methods employed to
create a large-scale dataset for transfer learning purposes, and
the experimental setup of the XFCN.
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A. Data Preprocessing and Data Sampling

For our experiments, we deployed high-resolution Plan-
etScope data from Planet Labs, Inc., [50]. With its 3-m res-
olution, resampled from a 3.7-m ground sampling distance, a
daily global coverage, and a four-channel blue, green, red, and
near infrared (B, G, R, NIR) composite, the data fit the needs
of a large-scale poverty mapping approach in every respect. Be-
yond the spectral bands, we included the normalized difference
vegetation index (NDVI) as an additional feature that increases
number of the input images to five channels. Table I indicates in
detail all PlanetScope datasets we used in this study. All datasets
are surface reflectance 16-b data from the original PlanetScope
data. Each band is min—max normalized to a float32 range of
0 — 1 to create an evenly distributed dataset suitable for our
deep learning framework.

The reference data for all 10 cities consist of manually mapped
polygons for each PlanetScope scene. The reference data were
created by multiple remote sensing experts to ensure consis-
tency between all test sites. Additionally, the reference data
were compared to ground truth data of poverty areas according
to census tracts, when this was available. In cases where no
official census data were available, or the ground truth data
were outdated, the reference was created based on Bing aerial
imagery and Google Street View images. The area of each city’s
dataset is limited by the PlanetScope scene and can be seen in
Table I. All slums larger than 1 ha within the PlanetScope scene
are included in the dataset. All slums, while featuring various
different morphologies, were delineated in a coherent manner to
ensure consistency when transfer learning between each city’s
dataset.

As an additional data source, we used the road network in
Open Street Map to create an auxiliary layer for the input data
tensor (B, G, R, NIR, NDVI, OSMp). To cope with incon-
sistencies in the street network between cities and the road
categories, only paved roads, accessible by automobile, were
selected, indicating major and residential usage. Foot and dirt
paths were excluded from the OSM road network to create a
coherent and unified data layer across all 10 datasets. Using only
these roads, we calculated a binary logarithm (log,) proximity
to each road. This not only shows the distance from each pixel to
the nearest street, it also gives insights about the general shape
of the road network, which can serve as a useful indicator of
settlement structures [10], [22].

The input data-cube is split into a 299 x 299 X ngj, image
patch to match the input dimension of the XFCN. The image
patches are split with alarge overlap of 199 pixels inboth z and y
directions to increase the datasets volume. To further increase the
dataset size and its slum sample proportion, we make use of data
augmentation on the image patches used for training. A variation
of image translation, dropout, and gamma adjustments in [51]
is used to increase the original data by a factor of four; each of
these augmented image patches is then rotated three times by
90°. The augmenters are listed in Table I and are chosen based
on successful training techniques from the work in [52] and [53].

Table I provides insight about the dataset used for training the
XFCN. Ten cities in the Global South are selected, three in Africa
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Fig. 3. Architecture of the XFCN. The Xception backbone is slightly changed to allow for a multidimensional input and more rigorous regularization. After the

exit flow, a fully convolutional flow follows. All convolutional blocks are a combination of standard 2-D convolutions C',, or depthwise separable convolutions
Cfls in combination with batch normalization, dropout, and ReLU activation functions. The XFCN features residual skip connection throughout the whole network

(Ry,), and during the upscale flow the dilated convolutions (C’,?) are fused with

the long distance skip connections from the entry flow.

TABLE I
OVERVIEW OF THE DATASETS USED FOR TRAINING THE XFCN

Test site Caracas Mumbai  Nairobi Delhi Lagos  Medellin Shenzhen Cape Town Rio Sdo Paulo
CA MU NA DE LA ME SH CT RI SP
Slums category Cq Ch Cq Co Co Co Co Cs Csy Cs
PlanetScope Area [km?] 357 1,379 211 852 230 59 1,471 356 2,086 3,764
Number of slums 104 452 47 232 51 49 1,872 70 404 905
Total area of slums [km?] 304 41.3 8.2 5.3 15.0 4.1 46.2 6.1 26.4 513
Mean size of slums [ha] 29.2 9.1 17.5 2.3 29.4 8.4 2.5 8.3 6.5 4.4
Slum size dispersion [ha] 72.8 20.6 43.6 5.3 53.7 9.9 3.0 10.3 11.0 6.1
Training data
Numberofasgmented 15050 19,109 2300 2162 309 1565 23,909 2117 10722 18822
training patches
Slum sample 382 264 27 73 461 241 227 198 19.4 169
proportion [%]
Training steps
XFCNeity 34,067 59,715 7,187 6,756 9,656 4,890 74,715 6,616 33,506 58,818
XFCNpsp 288,044 283,453 230,991 231,336 314,897 291,096 221,211 266,333 288,662 260,818
XFCNESEP 23,848 41,801 5,031 4,729 6,759 3,423 52,300 4,630 23,454 41,173

The table shows information on each city’s dataset, the training data, and finally, the total number of training steps for each experiment of the XFCN model is shown.

(Lagos, Nairobi, Cape Town), three in Asia (Delhi, Mumbai,
Shenzhen), and four in Latin America (Caracas, Medellin, Rio
de Janeiro, S3o Paulo). Ten cities are chosen due to their varying
morphologic slum features, providing a comprehensive morpho-
logic poverty feature set to learn diverse slum representations.
All 10 cities are categorized by their morphological features
from Section I into the categories C; _3. Although an intraurban
variability of the morphological slum features is present in all
datasets, the slums of each city are grouped into these three
categories according to the most prominent morphologic slum
features of all the slums in each city. Caracas, Mumbai, and
Nairobi represent the first category of slum morphologies C1,
where high building densities, nonuniform building orientation,

high heterogeneity of the slum buildings themself, very small
building sizes, and low-rise building heights can be found. Delhi,
Lagos, Medellin, and Shenzhen represent typical slum features
of type Cs. In these cities, slum settlements can deviate to a
minor extent from the aforementioned features. In Cape Town,
Rio de Janeiro, and Sao Paulo, slums deviate more significantly
from the slum morphologies of type C, forming a third type of
slum category, C's. Additionally, the dataset of these 10 cities
can be described by four components seen in Table I: number
of slums, mean size of slums, the number of image patches, and
the slum sample proportion. In Mumbai, Rio de Janeiro, Sdo
Paulo, and Shenzhen, more than 400 slums are present in their
dataset, but with a smaller mean slum size in Rio de Janeiro, Sdo
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TABLE II
DATA AUGMENTATION FOR THE TRAINING DATA

Augmentation Crop [px] Translation  Dropout Gamma
1 (10,20) (0.8,1.2) None (0.7,1.3)
2 (20,10) (1.0,1.5) Salt&Pepper (0.7,1.3)
3 (10,5) (1.5,1.2) None (0.7,1.3)
4 (5,10)  (1.1,1.5) Salt&Pepper (0.7,1.3)

Dropout and Gamma augmentations are only used on the images and not their
annotations. All augmentations are rotated three times by 90°.

Paulo, and Shenzhen, only the Mumbai dataset surpasses a slum
sample percentage of 25%. In contrast, Cape Town, Caracas,
Lagos, Medellin, and Nairobi feature fewer slums, but a larger
mean slum size in Caracas, Lagos, and Nairobi also shows a
substantial slum sample proportion. Delhi exhibits the lowest
slum sample proportion, with only 7% of all pixels labeled
as slums. Although there are in total more than 200 slums
in the dataset, the very small mean size of slums indicates a
challenging dataset. Grouping the 10 cities by these 4 features
can indicate where the XFCN is confronted with an easier or
more challenging task. But regardless of a large slum sample
proportion or a vast number of slums in the dataset, the decisive
challenge is the combination of the slum morphology types C_3
in combination with the training dataset components of Table I.

B. Experiments

The XFCN was trained on an augmented dataset for each
single city as a benchmark to test transfer learning capabilities.
The models that trained in one city and tested on unseen image
patches of the same city are labeled as XFCNy. A global
poverty training dataset was created where all training patches
were combined into one big dataset, whereas all images of the
tested city were excluded. The XFCN trained on the global
dataset, which was tested for each city in a leave-one-out manner,
was named XFCNygp [large-scale poverty (LSP) dataset]. In
addition, the XFCN{gp was transfer learned to a training dataset
of each city XFCN{&p; thus 30 experiments for each, the five-
and six-dimensional input dataset were conducted. Throughout
all experiments, the complete dataset and the dataset of each
city were split into training (70%), validation (15%), and testing
(15%), where the testing and validation image patches were
selected manually for each city to create a coherent and spatially
separated dataset and to compare results in a meaningful manner.

1) Transfer Learning: The XFCN was trained using an in-
ductive transfer learning approach. Given a source domain
dataset D° and a learning task 7', a target domain dataset
DT and learning task 77, we aim to improve the learning of
the target predictive function f7'(-) using the knowledge in D*
and T'%, where T # T [54]. In this context, the XFCN[E, is
trained on the source domain dataset D{%p to target dataset D:;fly
of each city excluded from the D% dataset. All variables of the
XFCN were available for training during the transfer learning
process.
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2) Experimental Setup: The XFCN was implemented in
TensorFlow and adapted from the works in[55] and [56]. To
prevent overfitting, multiple constraints were employed. Batch
normalization with a batch size of 16 was used to improve
the learning procedure, including a weight decay of 0.99 for
L2-regularization to reduce overfitting. After each convolution,
a dropout layer followed. By randomly dropping nodes with a
20% probability during each weight update cycle, the model had
to adapt to learn independent representations. The XFCN was
trained using a softmax cross entropy-loss function and using the
Adam optimizer [57]. All models used an exponential decaying
learning rate. The initial starting learning rate was quite high at
0.1, which is possible due to using batch normalization, since no
activation can be either too high or too low [58]. When the XFCN
was transfer learned, a lower learning rate of 0.01 was used to
start training. The XFCNs were trained depending on the size
of their dataset. The total number of steps of each experiment
can be seen in Table I, and for each experiment, early stopping
was used to end the training process as soon as the validation
accuracy did not substantially improve.

V. RESULTS

Unseen image patches from the test dataset with an image size
of 299 x 299 X ngim were used for testing and were predicted
with an overlap of 199 pixels in both = and y directions. Thus,
nine image patches can be used to create an area of 100 x 100
pixels of the same observation. The most probable result can be
derived using a majority operator. This method not only ensures
that uncertainties in the model variance are dealt with more
robustly, but also reduces the difficulties of predicting in the
edge region of the image patches.

Accuracies are reported in the F'1-score and the Intersection
over Union (IoU). The F1-score takes both error of omission
and error of commission into consideration to compute its score.
Thus, the F1-score can be recognized as the harmonic mean of
precision and recall, as seen in (1)

TP/(TP + FP) x TP/(TP + FN)

Fl =2 S w vp) PP v PNy
loU= ﬁ
where TP = True positives
FP = False positives
FN = False negatives. 2)

The IoU in (2), also referred to as the Jaccard index, is defined
as the size of the intersection between the ground truth and the
classified map, divided by the size of the union of the sample
sets. The ToU is a very penalizing metric and values above 50%
can be considered an adequate match of the similarity between
ground truth and the predicted map [59], since in real-world
applications, it is not likely that the = and y coordinates of the
predicted poverty area are going to exactly match the x and y
coordinates of the ground truth. Results for all 60 experiments
are reported in Table III. The results are grouped according the
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TABLE III

RESULTS FOR ALL EXPERIMENTS USING THE IOU AND THE F1-SCORE ACCURACY MEASURES

Dataset CA MU NA DE LA ME SH CT RI SP
Slums category Ch Ch Cq Co Ca C2 Cs Cs Cs C3
Ndim Intersection over Union (IoU)
XFCNeity 59.13 71.16 73.13 56.23 61.04 51.47 63.24 66.56 58.89 68.42
XFCNpsp 5 58.16 50.58 49.05 57.97 67.48 61.27 63.01 57.48 56.74 56.43
XFCNEE, 80.70 80.86 75.63 58.10 70.44 68.35 70.11 77.98 73.37 70.49
XFCNeity 76.73 78.49 78.09 60.22 71.91 48.95 85.98 72.28 54.48 61.19
XFCNpsp 6 78.14 66.32 64.54 67.18 80.77 70.51 80.99 78.63 65.25 64.08
XFCNEE, 81.62 81.80 79.73 64.65 74.72 69.83 86.29 81.54 60.95 64.20
Fl-score (F1)

XFCNeiry 63.66 76.29 56.63 61.22 51.76 77.23 71.19 71.66 64.12 74.84
XFCNpsp 5 63.87 54.81 56.15 63.66 70.78 66.30 71.31 59.12 63.50 63.37
XFCNEE, 85.93 86.98 79.76 59.20 74.56 75.73 73.62 83.89 80.03 77.25
XFCNeity 81.48 83.98 82.67 68.47 71.99 60.15 89.49 73.81 57.27 64.16
XFCNpsp 6 82.68 70.33 66.94 71.81 76.78 76.58 83.59 82.61 71.52 70.20
XFCNEE, 86.17 86.63 83.24 67.44 79.52 72.72 89.48 83.76 64.46 67.53

The top part of the table shows the experiments for the five-dimensional remote sensing data, whereas the bottom part includes the proximity to the road network as an
additional sixth input dimension. The highest accuracies for each experiment are presented in bold; the highest overall accuracy for each accuracy score is highlighted in gray.

morphologic slum categories C;_3. The highest accuracies for
each row are presented in bold and the highest overall accuracy
for each F1-score and IoU is highlighted in gray. The following
paragraphs report the results based on the three experiments
XFCNgiry, XFCNpsp, and XFCN{§p.

A. XFCN

The first set of experiments was trained on a single city’s
datasets and tested in a spatially separated area of the same city.
The XFCN trained on five-dimensional input data, including the
channels B, G, R, NIR, and the NDVI, achieved a mean IoU for
all cities of 62.93% and a mean F1-score of 66.86%. Training
the XFCN on six-dimensional data, including the proximity to
the road network, achieved a mean IoU for all cities of 67.98%
and a mean F1-score of 73.35%. Including the Open Street Map
road network in the dataset could increase the mean IoU by
5.05% and the F1-score by 6.49%. The best results on the five-
dimensional data were achieved in Mumbai and Nairobi (C7)
and Sdo Paulo (C3), with an ToU of up to 73%. When training
on six-dimensional data, high ToU accuracies of over 70% could
be reached in Caracas and Mumbai (C), Lagos and Shenzhen
(C5), and Cape Town (C}).

B. XFCNpsp

The second set of experiments was trained on a large-scale
poverty dataset in a leave one out manner, training on acombined
dataset of nine cities and testing the results on the remaining city.
Thus, the XFCNs ability to map slums from features learned
on a global slum repository was tested. The XFCN trained on
five-dimensional input data achieved a mean IoU for all cities of

57.81% and a mean F'1-score of 63.87%. Training the XFCN
on six-dimensional data achieved a mean IoU for all cities of
71.64% and a mean F'1-score of 75.30%. Including the Open
Street Map road network in the dataset could increase the mean
ToU by 13.82% and the F1-score by 11.41%. AnToU of over 60%
could be reported in Lagos, Medellin, and Shenzhen (C') for the
five-dimensional data. Best ToU accuracies of around 80% for
six-dimensional inputs could be reached in Caracas (C), Lagos
and Shenzhen (C5), and Cape Town (C}3).

C. XFCN™%,

The third set of experiments was set up as an inductive transfer
learning experiment, where the XFCN is first trained on a
large-scale poverty dataset in a leave one out manner; afterward,
the XFCN was transfer learned to the remaining city’s training
dataset and tested in a spatially separated area of the same city.
The XFCN trained on five-dimensional input data, achieved
a mean IoU for all cities of 72.60% and a mean F'l-score of
77.69%. Training the XFCN on six-dimensional data achieved
a mean loU for all cities of 74.53% and a mean F'l-score of
78.10%. Including the Open Street Map road network in the
dataset could increase the mean IoU by 1.93% and the F'1-score
by 0.41%. In this experiment, the overall highest accuracies
could be reached for the five-dimensional remote sensing data in
Mumbai (C4) with an IoU of 80.86% and for the six-dimensional
data in Shenzhen (Cs) with an IoU of 86.29%. In general, the
transfer learning approach is able to reach IoU scores of over
80% for the five-dimensional data in Caracas and Mumbai (C)
and for the six-dimensional data in Caracas and Mumbai (C),
Shenzhen (C'3), and in Cape Town (C5).
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IoU accuracies represented in a boxplot for (a) all 10 cities and (b)—(d) each slum category for the three experiments XFCNcjy, XFCNLsp, and XFCNE?P

on the five-dimensional remote sensing data and the six-dimensional data where the proximity to the road network is included. (a) C1—_3. (b) C1. (c) Ca2. (d) Cs5.

VI. DISCUSSION

Comparing the results of the XFCN from the five-dimensional
input data, which solely consisted of remote sensing data, to the
results of the six-dimensional input data where the proximity
to the road network is added as an additional input layer, the
accuracies of the model tended to increase. Rio de Janeiro and
Sao Paulo are the only datasets where the IoU decreased when
comparing the five- and six-dimensional input data. This can
be attributed to slums featuring morphologic types of category
(3 in these cities. In both Rio de Janeiro and Sao Paulo, an
orderly structured road network in slum settlements deviated
significantly from typical complex slum morphologies, where
often nonpaved roads define an irregular mosaic of settlement
patterns. In general, the mean IoU for all five-dimensional
experiments is 63.42% and can be increased to 75.94% when
using the six-dimensional input data to train the XFCN. Thus,
the proximity to the road network, used as an additional input
dimension, is found to help the model to better differentiate
between formal settlements and slum settlements.

In our tests, we defined the set of experiments where the
XFCN was trained and tested within the same city (XFCNjy)
as a baseline for comparison with the other experiments. In
Fig. 4(a), all experiments can be compared to each other. The
mean IoU decreases from 59.83% to 57.81% when comparing
the XFCN.y and the XFCNygp trained on five-dimensional
input data, but increases from 68.83% to 71.64% when com-
paring the six-dimensional input data. These results show that
including auxiliary information about the road network can help
improving segmentation results when the XFCN is trained on a
generalized large-scale dataset including various categories of
slum morphologies. The results for the transfer learned XFCN
(XFCN[;) achieved the highest overall mean IoU accuracies
with 72.60% for the five-dimensional data and 74.53% for the
six-dimensional data. Table I shows the setup for all training
datasets: We identify some challenging datasets when there

are few training samples, a small slum sample proportion in
the respective city, small-sized areas of urban poverty, or a
combination of these issues. In these cases, we find the learning
task can be difficult for the XFCN;,. These attributes can be
seen in some variation throughout all datasets and slum cate-
gories; e.g., Nairobi (C7), Delhi and Medellin (C), and Cape
Town, Rio de Janeiro, and Sdo Paulo (C3). Accuracy measures
confirmed this analysis in Delhi and Medellin (C'3), and Rio de
Janeiro (C3), with ToU accuracy scores lower than 58.98% for
five-dimensional data and 60.22% for six-dimensional data. For
Nairobi (C4) and Cape Town (C3), this is not the case, which
can be attributed to stark differences in formal and informal
settlement morphologies, even in Cape Town (C3), where slum
morphologies deviate significantly from the slum features found
in category Cf.

In Fig. 4(b)—(d), the achieved accuracies are split into each
morphologic slum type. For the first category of morphologic
slum types C', the XFCNj, and the transfer learned XFCNEIS:P
are able to achieve high mean IToU accuracies, between 67.8%
and 81.1% for both the five- and six-dimensional input data.
Mapping slums of category C from features learned from the
dataset of the nine other cities (XFCNgp) result in lower mean
IoU accuracies, of 52.6% for the five-dimensional data and
69.7% for the six-dimensional input data. The XFCN| sp cannot
generalize well to slums of category C on the five-dimensional
remote sensing data. The results from XFCN| gp show a 17.1%
improvement of the mean IoU when comparing five- and six-
dimensional input data. This increase of the IoU score can be
explained by the inclusion of the Open Street Map road network;
training the XFCN on a variety of different slum categories,
the road network offers a feature set that is found in all slum
categories of C7_3. The accuracies for the datasets of the slum
category Cy suffer from the highest variance throughout all
three experiments in both the five- and six-dimensional input
data. While the mean IoU accuracies for the XFCN, and
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Comparative alignment for three cities of each slum category (C1_3). All results were trained on the six-dimensional input data. The left column shows

the results for the XFCN_jyy, the middle column shows results from the XFCNLsp model, and finally, the right column shows the transfer learned XFCNEEP results.

XFCN[E, are the lowest of the three slum categories for the
five-dimensional data with 57.9% and 66.8%, respectively, the
highest overall IoU accuracies can be seen in XFCNgp for
the five-dimensional data and for the six-dimensional data. The
XFCN{gp also achieves highest mean IoU accuracy, 74.86% for
the six-dimensional input data, when comparing the three slum
categories C1_3. Consequently, the XFCN is able to robustly
map slums of the category Co when it is previously trained on
a large variety of slum morphologies. Although the slums of
category C'3 deviate more significantly from the morphologic
slum features found in C_», it does not necessarily mean that
the XFCN suffers from low mapping accuracies.

Based on the results in Table III, we can confirm that the
XFCN is able to learn more robust representations of morpho-
logical slum features when it was previously trained on a large

morphologic variety of slum morphologies and then transfer
learned to a local domain dataset D5.". This is shown in a
general increase of accuracies for the XFCNJE, experiments.
Slums are highly heterogeneous in nature, especially when
comparing slum settlements on a global scale. While Table I
can explain some differences of the general slum features, some
are more complex to describe. Different morphologic slum types
(C1_3) can be seen in Fig. 5. Here, the mapped results for all
three models, trained on the six-dimensional input data, can be
depicted. The results in Mumbai (C7) show that all three models
XFCNiyy, XFCNysp, and XFCNJ§;, achieve an IoU score of over
66.32%. With 452 total slums, a mean slum size of 9.1[hal, and
slum features of category C1, slums can be mapped using all
three XFCN models and only the XFCNy sp model suffers from
some mild under classification. Results in Shenzhen (C5) show
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similar effects as seen in Mumbai. With a dataset consisting of
a large amount of slums, 1872, and a slum sample proportion of
22.7%, high ToU scores can be achieved in both XFCN_jiy and
XFCNJE, with over 85.98%. The strength of transfer learning
slum features form a large-scale poverty dataset to a small local
dataset can be seen in the mapping results of Cape Town in
Fig. 5. This dataset has a low amount of slums, 70, and only
2117 training patches. Thus, the XFCNy only achieves an IoU
score of 72.28% and suffers from over and under classification.
Only the transfer learned XFCN{ %}, is able to differentiate better
between the slums of category C's and the formal settlements.

In the cities with a lower IoU accuracy score of 65% (Delhi,
Rio de Janeiro, and Sdo Paulo), the XFCN struggles for various
reasons. Slums of the morphologic category Cs in Delhi and
('3 in Rio de Janeiro and Sdo Paulo, in combination with the
training datasets components (see Table I), indicate that these
cities not only suffer from a small mean slum size of less than
6.5 ha and a slum sample proportion of less than 20%, but
the slum settlements also share a certain similarity to formal
settlements. This effect is also represented by a more regular
road network in the slum settlements of in Rio de Janeiro and
Sao Paulo. The accuracy scores for both cities are higher when
the road network is not included in the training dataset. The
highest accuracies could be reached in Mumbai and Shenzhen,
where the training dataset in Table I provides a high number
of slum patches and a large slum sample proportion, and the
slum type morphologies of category C; and Cy offer a stark
difference between formal settlements and slums, as seen in
Fig. 5. The big advantages of transfer learning to map slums
could be observed in Caracas and Medellin (C), where the
initial training dataset is quite small and, thus, training the
XFCN from scratch is insufficient. Transferring poverty features
learned from the large-scale poverty dataset to these cities could
elevate to IoU from just under 48.9% to 69.8% in Medellin and
from 59.1% to 80.7% in Caracas.

VII. CONCLUSION

Detecting urban poverty from remote sensing data is still a
major challenge. It must deal with fuzzy feature spaces between
formal and informal settlements, often with a significant im-
balance of slum occurrences within the urban landscape and
an inter- and intraurban variability of morphological slum fea-
tures between different geographical regions. In this article, we
propose a transfer-learned XFCN, which is trained on three
experiments, testing whether it is possible to learn slum features
in geographically separated regions. We have found that the
success of transfer learning is not only dependent on the training
dataset components, e.g., high slum sample percentage and a
higher number of training patches, but also on the different slum
morphologies. The combination of both the dataset and distinct
slum morphology features are of importance to reach high map-
ping accuracies [Caracas, Mumbai, and Nairobi (C ), Shenzhen
(C5), and Cape Town (C3)]. In cases where the training dataset
components are not ideal, the XFCN trained on various slum
morphologies is able to match or surpass accuracies compared to
training the XFCN within the same city. The best overall results
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were achieved when the XFCN was transfer learned from a
large-scale poverty dataset to a smaller local dataset. Comparing
the results from the five-dimensional input data, which consisted
of only remote sensing data, and the six-dimensional data, where
the proximity to the road network was added as an additional
input dimension, accuracies improved segmentation outcomes
in most cases. This shows that additional data can be of major
importance to detecting urban poverty. Using more auxiliary
data to accompany remote sensing data for mapping slums
and novel deep learning architectures could potentially further
increase accuracies; thus, data sources outside of remote sensing
data could be used to make the decision process more robust
during training to map slum settlements on a global scale.
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