Camero Unzueta, Andres and Toutouh, Jamal and Alba, Enrique (2020) Random error sampling-based recurrent neural network architecture optimization. Engineering Applications of Artificial Intelligence, 96, p. 103946. Elsevier. doi: 10.1016/j.engappai.2020.103946. ISSN 0952-1976.
Full text not available from this repository.
Official URL: http://dx.doi.org/10.1016/j.engappai.2020.103946
Abstract
Recurrent neural networks are good at solving prediction problems. However, finding a network that suits a problem is quite hard because their performance is strongly affected by their architecture configuration. Automatic architecture optimization methods help to find the most suitable design, but they are not extensively adopted because of their high computational cost. In this work, we introduce the Random Error Sampling-based Neuroevolution (RESN), an evolutionary algorithm that uses the mean absolute error random sampling, a training-free approach to predict the expected performance of an artificial neural network, to optimize the architecture of a network. We empirically validate our proposal on four prediction problems, and compare our technique to training-based architecture optimization techniques, neuroevolutionary approaches, and expert designed solutions. Our findings show that we can achieve state-of-the-art error performance and that we reduce by half the time needed to perform the optimization.
Item URL in elib: | https://elib.dlr.de/137071/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||
Title: | Random error sampling-based recurrent neural network architecture optimization | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | November 2020 | ||||||||||||||||
Journal or Publication Title: | Engineering Applications of Artificial Intelligence | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | No | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
Volume: | 96 | ||||||||||||||||
DOI: | 10.1016/j.engappai.2020.103946 | ||||||||||||||||
Page Range: | p. 103946 | ||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||
ISSN: | 0952-1976 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Neuroevolution Metaheuristics Recurrent neural network Evolutionary algorithm | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Camero, Dr Andres | ||||||||||||||||
Deposited On: | 09 Nov 2020 13:07 | ||||||||||||||||
Last Modified: | 28 Mar 2023 23:57 |
Repository Staff Only: item control page