Camero Unzueta, Andres und Toutouh, Jamal und Alba, Enrique (2020) Random error sampling-based recurrent neural network architecture optimization. Engineering Applications of Artificial Intelligence, 96, Seite 103946. Elsevier. doi: 10.1016/j.engappai.2020.103946. ISSN 0952-1976.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: http://dx.doi.org/10.1016/j.engappai.2020.103946
Kurzfassung
Recurrent neural networks are good at solving prediction problems. However, finding a network that suits a problem is quite hard because their performance is strongly affected by their architecture configuration. Automatic architecture optimization methods help to find the most suitable design, but they are not extensively adopted because of their high computational cost. In this work, we introduce the Random Error Sampling-based Neuroevolution (RESN), an evolutionary algorithm that uses the mean absolute error random sampling, a training-free approach to predict the expected performance of an artificial neural network, to optimize the architecture of a network. We empirically validate our proposal on four prediction problems, and compare our technique to training-based architecture optimization techniques, neuroevolutionary approaches, and expert designed solutions. Our findings show that we can achieve state-of-the-art error performance and that we reduce by half the time needed to perform the optimization.
elib-URL des Eintrags: | https://elib.dlr.de/137071/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Random error sampling-based recurrent neural network architecture optimization | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | November 2020 | ||||||||||||||||
Erschienen in: | Engineering Applications of Artificial Intelligence | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 96 | ||||||||||||||||
DOI: | 10.1016/j.engappai.2020.103946 | ||||||||||||||||
Seitenbereich: | Seite 103946 | ||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||
ISSN: | 0952-1976 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Neuroevolution Metaheuristics Recurrent neural network Evolutionary algorithm | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Camero, Dr Andres | ||||||||||||||||
Hinterlegt am: | 09 Nov 2020 13:07 | ||||||||||||||||
Letzte Änderung: | 28 Mär 2023 23:57 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags