Humt, Matthias and Lee, Jongseok and Triebel, Rudolph (2020) Bayesian Optimization Meets Laplace Approximation for Robotic Introspection. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020. IROS 2020 Long-Term Autonomy Workshop, 2020-10-25 - 2020-11-25, Las Vegas, USA (online). ISBN 978-172816212-6. ISSN 2153-0858.
PDF
1MB |
Official URL: https://drive.google.com/file/d/1E9D8-bg-K_CIC2rlMyZg0si1zaozRfiO/view
Abstract
In robotics, deep learning (DL) methods are used more and more widely, but their general inability to provide reliable confidence estimates will ultimately lead to fragile and unreliable systems. This impedes the potential deployments of DL methods for long-term autonomy. Therefore, in this paper we introduce a scalable Laplace Approximation (LA) technique to make Deep Neural Networks (DNNs) more introspective, i.e. to enable them to provide accurate assessments of their failure probability for unseen test data. In particular, we propose a novel Bayesian Optimization (BO) algorithm to mitigate their tendency of under-fitting the true weight posterior, so that both the calibration and the accuracy of the predictions can be simultaneously optimized. We demonstrate empirically that the proposed BO approach requires fewer iterations for this when compared to random search, and we show that the proposed framework can be scaled up to large datasets and architectures.
Item URL in elib: | https://elib.dlr.de/137021/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Other) | ||||||||||||||||
Title: | Bayesian Optimization Meets Laplace Approximation for Robotic Introspection | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 25 October 2020 | ||||||||||||||||
Journal or Publication Title: | 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
ISSN: | 2153-0858 | ||||||||||||||||
ISBN: | 978-172816212-6 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Bayesian Optimization, Robotics, Deep Learning, Introspection, Bayesian Neural Networks, Laplace Approximation | ||||||||||||||||
Event Title: | IROS 2020 Long-Term Autonomy Workshop | ||||||||||||||||
Event Location: | Las Vegas, USA (online) | ||||||||||||||||
Event Type: | Workshop | ||||||||||||||||
Event Start Date: | 25 October 2020 | ||||||||||||||||
Event End Date: | 25 November 2020 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben Multisensorielle Weltmodellierung (old), R - Multisensory World Modelling (RM) [RO] | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) > Perception and Cognition | ||||||||||||||||
Deposited By: | Humt, Matthias | ||||||||||||||||
Deposited On: | 04 Nov 2020 18:15 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:39 |
Repository Staff Only: item control page