Humt, Matthias und Lee, Jongseok und Triebel, Rudolph (2020) Bayesian Optimization Meets Laplace Approximation for Robotic Introspection. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020. IROS 2020 Long-Term Autonomy Workshop, 2020-10-25 - 2020-11-25, Las Vegas, USA (online). ISBN 978-172816212-6. ISSN 2153-0858.
PDF
1MB |
Offizielle URL: https://drive.google.com/file/d/1E9D8-bg-K_CIC2rlMyZg0si1zaozRfiO/view
Kurzfassung
In robotics, deep learning (DL) methods are used more and more widely, but their general inability to provide reliable confidence estimates will ultimately lead to fragile and unreliable systems. This impedes the potential deployments of DL methods for long-term autonomy. Therefore, in this paper we introduce a scalable Laplace Approximation (LA) technique to make Deep Neural Networks (DNNs) more introspective, i.e. to enable them to provide accurate assessments of their failure probability for unseen test data. In particular, we propose a novel Bayesian Optimization (BO) algorithm to mitigate their tendency of under-fitting the true weight posterior, so that both the calibration and the accuracy of the predictions can be simultaneously optimized. We demonstrate empirically that the proposed BO approach requires fewer iterations for this when compared to random search, and we show that the proposed framework can be scaled up to large datasets and architectures.
elib-URL des Eintrags: | https://elib.dlr.de/137021/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Anderer) | ||||||||||||||||
Titel: | Bayesian Optimization Meets Laplace Approximation for Robotic Introspection | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 25 Oktober 2020 | ||||||||||||||||
Erschienen in: | 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
ISSN: | 2153-0858 | ||||||||||||||||
ISBN: | 978-172816212-6 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Bayesian Optimization, Robotics, Deep Learning, Introspection, Bayesian Neural Networks, Laplace Approximation | ||||||||||||||||
Veranstaltungstitel: | IROS 2020 Long-Term Autonomy Workshop | ||||||||||||||||
Veranstaltungsort: | Las Vegas, USA (online) | ||||||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||||||
Veranstaltungsbeginn: | 25 Oktober 2020 | ||||||||||||||||
Veranstaltungsende: | 25 November 2020 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Multisensorielle Weltmodellierung (alt), R - Multisensorielle Weltmodellierung (RM) [RO] | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||
Hinterlegt von: | Humt, Matthias | ||||||||||||||||
Hinterlegt am: | 04 Nov 2020 18:15 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:39 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags