Heidler, Konrad and Mou, LiChao and Baumhoer, Celia and Dietz, Andreas and Zhu, Xiao Xiang (2022) HED-UNet: Combined Segmentation and Edge Detection for Monitoring the Antarctic Coastline. IEEE Transactions on Geoscience and Remote Sensing, 60 (430051), pp. 1-14. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2021.3064606. ISSN 0196-2892.
Full text not available from this repository.
Official URL: https://ieeexplore.ieee.org/document/9383809
Abstract
Deep learning-based coastline detection algorithms have begun to outshine traditional statistical methods in recent years. However, they are usually trained only as single-purpose models to either segment land and water or delineate the coastline. In contrast to this, a human annotator will usually keep a mental map of both segmentation and delineation when performing manual coastline detection. To take into account this task duality, we, therefore, devise a new model to unite these two approaches in a deep learning model. By taking inspiration from the main building blocks of a semantic segmentation framework (UNet) and an edge detection framework (HED), both tasks are combined in a natural way. Training is made efficient by employing deep supervision on side predictions at multiple resolutions. Finally, a hierarchical attention mechanism is introduced to adaptively merge these multiscale predictions into the final model output. The advantages of this approach over other traditional and deep learning-based methods for coastline detection are demonstrated on a data set of Sentinel-1 imagery covering parts of the Antarctic coast, where coastline detection is notoriously difficult. An implementation of our method is available at https://github.com/khdlr/HED-UNet.
Item URL in elib: | https://elib.dlr.de/136951/ | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||
Title: | HED-UNet: Combined Segmentation and Edge Detection for Monitoring the Antarctic Coastline | ||||||||||||||||||
Authors: |
| ||||||||||||||||||
Date: | 2022 | ||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||
Open Access: | No | ||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||
Volume: | 60 | ||||||||||||||||||
DOI : | 10.1109/TGRS.2021.3064606 | ||||||||||||||||||
Page Range: | pp. 1-14 | ||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||
Status: | Published | ||||||||||||||||||
Keywords: | Deep Learning, U-Net, edge detection, coastline, Antarctica, HED-Unet | ||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research, R - Artificial Intelligence | ||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Land Surface Dynamics Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||
Deposited By: | Baumhoer, Celia | ||||||||||||||||||
Deposited On: | 25 May 2021 09:18 | ||||||||||||||||||
Last Modified: | 10 Jan 2022 10:49 |
Repository Staff Only: item control page