Heidler, Konrad und Mou, LiChao und Baumhoer, Celia und Dietz, Andreas und Zhu, Xiao Xiang (2022) HED-UNet: Combined Segmentation and Edge Detection for Monitoring the Antarctic Coastline. IEEE Transactions on Geoscience and Remote Sensing, 60 (430051), Seiten 1-14. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2021.3064606. ISSN 0196-2892.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/9383809
Kurzfassung
Deep learning-based coastline detection algorithms have begun to outshine traditional statistical methods in recent years. However, they are usually trained only as single-purpose models to either segment land and water or delineate the coastline. In contrast to this, a human annotator will usually keep a mental map of both segmentation and delineation when performing manual coastline detection. To take into account this task duality, we, therefore, devise a new model to unite these two approaches in a deep learning model. By taking inspiration from the main building blocks of a semantic segmentation framework (UNet) and an edge detection framework (HED), both tasks are combined in a natural way. Training is made efficient by employing deep supervision on side predictions at multiple resolutions. Finally, a hierarchical attention mechanism is introduced to adaptively merge these multiscale predictions into the final model output. The advantages of this approach over other traditional and deep learning-based methods for coastline detection are demonstrated on a data set of Sentinel-1 imagery covering parts of the Antarctic coast, where coastline detection is notoriously difficult. An implementation of our method is available at https://github.com/khdlr/HED-UNet.
| elib-URL des Eintrags: | https://elib.dlr.de/136951/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
| Titel: | HED-UNet: Combined Segmentation and Edge Detection for Monitoring the Antarctic Coastline | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | 2022 | ||||||||||||||||||||||||
| Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||
| Band: | 60 | ||||||||||||||||||||||||
| DOI: | 10.1109/TGRS.2021.3064606 | ||||||||||||||||||||||||
| Seitenbereich: | Seiten 1-14 | ||||||||||||||||||||||||
| Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
| ISSN: | 0196-2892 | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | Deep Learning, U-Net, edge detection, coastline, Antarctica, HED-Unet | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung, R - Künstliche Intelligenz | ||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
| Hinterlegt von: | Baumhoer, Dr. Celia | ||||||||||||||||||||||||
| Hinterlegt am: | 25 Mai 2021 09:18 | ||||||||||||||||||||||||
| Letzte Änderung: | 08 Mai 2025 08:59 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags