elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

HED-UNet: Combined Segmentation and Edge Detection for Monitoring the Antarctic Coastline

Heidler, Konrad und Mou, LiChao und Baumhoer, Celia und Dietz, Andreas und Zhu, Xiao Xiang (2022) HED-UNet: Combined Segmentation and Edge Detection for Monitoring the Antarctic Coastline. IEEE Transactions on Geoscience and Remote Sensing, 60 (430051), Seiten 1-14. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2021.3064606. ISSN 0196-2892.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://ieeexplore.ieee.org/document/9383809

Kurzfassung

Deep learning-based coastline detection algorithms have begun to outshine traditional statistical methods in recent years. However, they are usually trained only as single-purpose models to either segment land and water or delineate the coastline. In contrast to this, a human annotator will usually keep a mental map of both segmentation and delineation when performing manual coastline detection. To take into account this task duality, we, therefore, devise a new model to unite these two approaches in a deep learning model. By taking inspiration from the main building blocks of a semantic segmentation framework (UNet) and an edge detection framework (HED), both tasks are combined in a natural way. Training is made efficient by employing deep supervision on side predictions at multiple resolutions. Finally, a hierarchical attention mechanism is introduced to adaptively merge these multiscale predictions into the final model output. The advantages of this approach over other traditional and deep learning-based methods for coastline detection are demonstrated on a data set of Sentinel-1 imagery covering parts of the Antarctic coast, where coastline detection is notoriously difficult. An implementation of our method is available at https://github.com/khdlr/HED-UNet.

elib-URL des Eintrags:https://elib.dlr.de/136951/
Dokumentart:Zeitschriftenbeitrag
Titel:HED-UNet: Combined Segmentation and Edge Detection for Monitoring the Antarctic Coastline
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Heidler, Konradkonrad.heidler (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Mou, LiChaoLiChao.Mou (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Baumhoer, CeliaCelia.Baumhoer (at) dlr.dehttps://orcid.org/0000-0003-1339-2288NICHT SPEZIFIZIERT
Dietz, AndreasAndreas.Dietz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiao.zhu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2022
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:60
DOI:10.1109/TGRS.2021.3064606
Seitenbereich:Seiten 1-14
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:Deep Learning, U-Net, edge detection, coastline, Antarctica, HED-Unet
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung, R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche
Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Baumhoer, Dr. Celia
Hinterlegt am:25 Mai 2021 09:18
Letzte Änderung:27 Jun 2023 09:33

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.