Medina, Daniel and Vilà-Valls, Jordi and Chaumette, Eric and Vincent, François and Closas, Pau (2021) Cramér-Rao bound for a mixture of real- and integer-valued parameter vectors and its application to the linear regression model. Signal Processing, 179. Elsevier. doi: 10.1016/j.sigpro.2020.107792. ISSN 0165-1684.
![]() |
PDF
- Postprint version (accepted manuscript)
795kB |
Official URL: https://www.sciencedirect.com/science/article/abs/pii/S0165168420303364
Abstract
Performance lower bounds are known to be a fundamental design tool in parametric estimation theory. A plethora of deterministic bounds exist in the literature, ranging from the general Barankin bound to the well-known Cramér-Rao bound (CRB), the latter providing the optimal mean square error performance of locally unbiased estimators. In this contribution, we are interested in the estimation of mixed real- and integer-valued parameter vectors. We propose a closed-form lower bound expression leveraging on the general CRB formulation, being the limiting form of the McAulay-Seidman bound. Such formulation is the key point to take into account integer-valued parameters. As a particular case of the general form, we provide closed-form expressions for the Gaussian observation model. One noteworthy point is the assessment of the asymptotic efficiency of the maximum likelihood estimator for a linear regression model with mixed parameter vectors and known noise covariance matrix, thus complementing the rather rich literature on that topic. A representative carrier-phase based precise positioning example is provided to support the discussion and show the usefulness of the proposed lower bound.
Item URL in elib: | https://elib.dlr.de/136928/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Cramér-Rao bound for a mixture of real- and integer-valued parameter vectors and its application to the linear regression model | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | February 2021 | ||||||||||||||||||||||||
Journal or Publication Title: | Signal Processing | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 179 | ||||||||||||||||||||||||
DOI: | 10.1016/j.sigpro.2020.107792 | ||||||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||||||
ISSN: | 0165-1684 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Cramér-Rao bound; McAulay-Seidman bound; Mixed real- integer parameter vector estimation; Linear regression; GNSS; Ambiguity resolution | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Communication and Navigation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R KN - Kommunikation und Navigation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Project Navigation 4.0 (old) | ||||||||||||||||||||||||
Location: | Neustrelitz | ||||||||||||||||||||||||
Institutes and Institutions: | Institute of Communication and Navigation > Nautical Systems | ||||||||||||||||||||||||
Deposited By: | Medina, Daniel | ||||||||||||||||||||||||
Deposited On: | 29 Oct 2020 11:47 | ||||||||||||||||||||||||
Last Modified: | 16 Sep 2022 03:00 |
Repository Staff Only: item control page