Medina, Daniel und Vilà-Valls, Jordi und Chaumette, Eric und Vincent, François und Closas, Pau (2021) Cramér-Rao bound for a mixture of real- and integer-valued parameter vectors and its application to the linear regression model. Signal Processing, 179. Elsevier. doi: 10.1016/j.sigpro.2020.107792. ISSN 0165-1684.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
795kB |
Offizielle URL: https://www.sciencedirect.com/science/article/abs/pii/S0165168420303364
Kurzfassung
Performance lower bounds are known to be a fundamental design tool in parametric estimation theory. A plethora of deterministic bounds exist in the literature, ranging from the general Barankin bound to the well-known Cramér-Rao bound (CRB), the latter providing the optimal mean square error performance of locally unbiased estimators. In this contribution, we are interested in the estimation of mixed real- and integer-valued parameter vectors. We propose a closed-form lower bound expression leveraging on the general CRB formulation, being the limiting form of the McAulay-Seidman bound. Such formulation is the key point to take into account integer-valued parameters. As a particular case of the general form, we provide closed-form expressions for the Gaussian observation model. One noteworthy point is the assessment of the asymptotic efficiency of the maximum likelihood estimator for a linear regression model with mixed parameter vectors and known noise covariance matrix, thus complementing the rather rich literature on that topic. A representative carrier-phase based precise positioning example is provided to support the discussion and show the usefulness of the proposed lower bound.
elib-URL des Eintrags: | https://elib.dlr.de/136928/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Cramér-Rao bound for a mixture of real- and integer-valued parameter vectors and its application to the linear regression model | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Februar 2021 | ||||||||||||||||||||||||
Erschienen in: | Signal Processing | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 179 | ||||||||||||||||||||||||
DOI: | 10.1016/j.sigpro.2020.107792 | ||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||
ISSN: | 0165-1684 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Cramér-Rao bound; McAulay-Seidman bound; Mixed real- integer parameter vector estimation; Linear regression; GNSS; Ambiguity resolution | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Kommunikation und Navigation | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R KN - Kommunikation und Navigation | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt Navigation 4.0 (alt) | ||||||||||||||||||||||||
Standort: | Neustrelitz | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nautische Systeme | ||||||||||||||||||||||||
Hinterlegt von: | Medina, Daniel | ||||||||||||||||||||||||
Hinterlegt am: | 29 Okt 2020 11:47 | ||||||||||||||||||||||||
Letzte Änderung: | 16 Sep 2022 03:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags