Henry, Corentin und Fraundorfer, Friedrich und Vig, Eleonora (2021) Aerial Road Segmentation in the Presence of Topological Label Noise. In: 25th International Conference on Pattern Recognition, ICPR 2020, Seiten 2336-2343. ICPR 2020, 2021-01-10 - 2021-01-15, Milan, Italy. doi: 10.1109/ICPR48806.2021.9412054. ISBN 978-1-7281-8808-9. ISSN 1051-4651.
PDF
7MB | |
PDF
264kB |
Offizielle URL: https://ieeexplore.ieee.org/document/9412054
Kurzfassung
The availability of large-scale annotated datasets has enabled Fully-Convolutional Neural Networks to reach outstanding performance on road extraction in aerial images. However, high-quality pixel-level annotation is expensive to produce and even manually labeled data often contains topological errors. Trading off quality for quantity, many datasets rely on already available yet noisy labels, for example from OpenStreetMap. In this paper, we explore the training of custom U-Nets built with ResNet and DenseNet backbones using noise-aware losses that are robust towards label omission and registration noise. We perform an extensive evaluation of standard and noise-aware losses, including a novel Bootstrapped DICE-Coefficient loss, on two challenging road segmentation benchmarks. Our losses yield a consistent improvement in overall extraction quality and exhibit a strong capacity to cope with severe label noise. Our method generalizes well to two other fine-grained topology delineation tasks: surface crack detection for quality inspection and cell membrane extraction in electron microscopy imagery.
elib-URL des Eintrags: | https://elib.dlr.de/136343/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
Titel: | Aerial Road Segmentation in the Presence of Topological Label Noise | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Januar 2021 | ||||||||||||||||
Erschienen in: | 25th International Conference on Pattern Recognition, ICPR 2020 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.1109/ICPR48806.2021.9412054 | ||||||||||||||||
Seitenbereich: | Seiten 2336-2343 | ||||||||||||||||
ISSN: | 1051-4651 | ||||||||||||||||
ISBN: | 978-1-7281-8808-9 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | label noise; road extraction; semantic segmentation; satellite imagery; aerial imagery | ||||||||||||||||
Veranstaltungstitel: | ICPR 2020 | ||||||||||||||||
Veranstaltungsort: | Milan, Italy | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 10 Januar 2021 | ||||||||||||||||
Veranstaltungsende: | 15 Januar 2021 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - NGC KoFiF (alt), R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Henry, Corentin | ||||||||||||||||
Hinterlegt am: | 09 Okt 2020 09:37 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:38 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags