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Abstract—The availability of large-scale annotated datasets has
enabled Fully-Convolutional Neural Networks to reach outstand-
ing performance on road extraction in aerial images. However,
high-quality pixel-level annotation is expensive to produce and
even manually labeled data often contains topological errors.
Trading off quality for quantity, many datasets rely on already
available yet noisy labels, for example from OpenStreetMap. In
this paper, we explore the training of custom U-Nets built with
ResNet and DenseNet backbones using noise-aware losses that
are robust towards label omission and registration noise. We
perform an extensive evaluation of standard and noise-aware
losses, including a novel Bootstrapped DICE-Coefficient loss, on
two challenging road segmentation benchmarks. Our losses yield
a consistent improvement in overall extraction quality and exhibit
a strong capacity to cope with severe label noise. Our method
generalizes well to two other fine-grained topology delineation
tasks: surface crack detection for quality inspection and cell
membrane extraction in electron microscopy imagery.

I. INTRODUCTION

In the era of digitization, we set the goal of mapping
the entire surface of the world. Our motivation to monitor
human infrastructures is driven by the rapid expansion of
urban areas: transportation networks and high-definition maps
in particular are being intensively investigated thanks to their
relevance in autonomous driving. Although road extraction
in aerial and satellite images has already been studied for
decades, it remains a complex topic. Unlike other object types
such as buildings and vehicles, roads are continuous objects
often arbitrarily shaped and organized in a complex topol-
ogy. In 2013, a Convolutional Neural Network (CNN) first
surpassed traditional road extraction algorithms, leveraging a
huge dataset of annotated satellite images, the Massachusetts
Roads Dataset [1]. Since then, more datasets of increasing
difficulty were released [2], [3]. On the methods side, a clear
trend shows a preference for variations of the renowned U-Net
[4], a Fully-Convolutional Neural Network (FCNN) introduced
back in 2015, over state-of-the-art architectures in semantic
segmentation, such as DeepLabv3+ [5] and DenseASPP [6].

At present, a major obstacle to improving the performance
of U-Net-like FCNNs is the annotation quality of benchmark
datasets. As partly described in [7], road label inaccuracies
come from several sources. First, omission noise when objects
of interest are missed by the annotators. Second, registra-
tion noise when labels are offset compared to the object

Fig. 1. Visualization of different types of label noise and their effect on the
predictions. (a-d) Triplets of RGB, confusion, and probability samples of our
Dense-U-Net-121 on the test set of Massachusetts. In confusion maps, green
are true positives, blue false negatives, and red false positives. (a) typical
almost perfect predictions; (b) inconsistent labels; (c) non-annotated parking
lot; (d) incorrect label topology (single instead of dual-lane). (e-f) RGB and
label samples from the training set of DeepGlobe. The non-annotated roads
are overlaid with red dash-lines.

beneath them. Third, over-simplification of the labels when,
for instance, variable-thickness objects are annotated with
fixed-thickness lines. In the context of road segmentation, all
three issues sometimes come from the use of OpenStreetMap
(OSM) rasterized vector data, a less resource-intensive labeling
process than pixel-wise annotation. It may also occur when a
ground truth is drawn on top of one image source, say optical
RGB images, and transferred to another image source of the
same geographic area, say radar images. In this case, some
roads might appear in slightly different positions, while others
might not be visible anymore. Label noise results in a greater
difficulty to train FCNNs, but more importantly it eventually



makes the benchmark less reliable if the test set is also noisy.
Concrete examples of noise-effects can be found in Figure 1.
For all these reasons, FCNNs must be trained robustly to label
noise. In the machine learning literature, one solution is to
use noise-aware losses [8] which re-balance the confidence
granted to the ground truth in favor of the predictions.

In this paper, we introduce such noise-aware losses in
the context of pixel-wise labeling, more precisely for road
segmentation in aerial images. To this end, (1) to benchmark
existing segmentation losses for road extraction, we first
train custom U-Nets with ResNet and DenseNet backbones
using several (metric-based) losses, alone or in combinations.
(2) We then adapt several noise-aware losses from image
classification, such as the Sigmoid, Unhinged, Savage, and
Bootstrapped BCE, and demonstrate their benefits, especially
in the presence of more severe topological noise. (3) We
also introduce a novel noise-aware loss, the Soft-Bootstrapped
DICE, which is most efficient in recovering from high levels
of label noise. (4) We experimentally validate our findings
and reach competitive performance on the challenging Mas-
sachusetts [1] and DeepGlobe [2] road extraction datasets,
and (5) show good generalization on two other topology
delineation tasks from materials science and medical imaging.

II. RELATED WORK

Road segmentation is a long-studied topic in computer
vision, which is often formulated as a two-phase extraction:
(1) a binary pixel-wise segmentation of road candidates with
a deep segmentation network as a starting point [1], [9], [10],
[11], [12], supporting (2) the inference of a topological graph
in the form of nodes and edges. This is the approach taken in
DeepRoadMapper [13], RoadTracer [14] and [15]. While only
the SpaceNet dataset [3] covers both stages, several challeng-
ing benchmarks are available for binary road segmentation,
namely the Massachusetts Roads [1], the DeepGlobe Road
Extraction Challenge [2], and TorontoCity [16] (not released
yet). Our focus is on stage one: binary road segmentation.

Aerial road extraction presents unique difficulties as op-
posed to ground imagery, especially on lower-resolution satel-
lite imagery with Ground Sampling Distances (GSD) of 1 m
to 30 cm/pixel. Class imbalance due to roads’ thinness and
sparsity in the images is usually solved in three ways: using
a weighted-loss to emphasize certain classes [17], [18], using
relaxed or specialized metrics during evaluation to increase
the spatial tolerance towards small mistakes [19], [1], [20],
[9], or using special CNNs, losses or post-processing [13], [9],
[21], [22]. Somewhat surprisingly, the current benchmark state
of the art is not based on complex segmentation architectures
found in ground imagery [5], [6], but derived from U-Net [4],
a much simpler FCNN for medical image analysis. The top-4
performers on the DeepGlobe challenge are D-LinkNet [10],
U-Net-like Resnet [11], Residual Inception SkipNet [12], and
EOSResUNet [23], all derivatives of U-Net. It makes all the
more sense since tasks in the medical field are subject to
the same imbalance, topology and annotation issues as in
road extraction. Similarly to FC-DenseNet [24], we explore

the fusion of ResNets [25] and DenseNets [26] with U-
Net, but contrary to this previous work, we use the original
architectures as backbone so as to be able to use the widely
available ImageNet pre-trained weights.

Learning from noisy labels is tackled by several lines of
research [27]. Many works focus on designing noise-aware
or noise-corrected losses [28], [8], [29], [30], [31], [32],
including the Unhinged [28], the Sigmoid [29], the Ramp [32],
and the Savage [30] losses. Some of these losses, however,
require a noise rate estimation, in the form of the noise
transition matrix [8], which makes more sense in a multi-class
(especially in the fine-grained) classification setting, and less in
binary classification. Reed et al. [31] proposed a bootstrapping
scheme to combine training labels and the current model’s
prediction to generate new training targets, thus avoiding the
explicit modeling of the noise distribution.

Noise-robustness has almost exclusively been studied in the
context of image classification and rarely in pixel-level label-
ing. An early exception is [7], whose deep-learning method for
binary road labeling explicitly handles omission and registra-
tion noise. Here, we adapt noise-correcting losses and perform
label noise reduction, all initially proposed in the context of
image-level labeling, to the task of semantic segmentation
and more specifically to aerial road labeling. We perform
an exhaustive evaluation of standard losses, existing noise-
correcting losses, and our new loss, the Soft-Bootstrapped
DICE loss, and show that our new loss is optimal in the face
of severe topology noise.

III. METHODS

A. Res- and Dense-U-Nets for road segmentation

As demonstrated by the state of the art in three public
benchmarks [1], [2], [3], U-Nets constitute a competitive
baseline for road segmentation in aerial images. However,
the original U-Net suffers from a performance bottleneck. It
features a unique backbone which is not used by any other
FCNN, hence is rarely pre-trained on ImageNet. Yet research
has shown the importance of such pre-training when training
data is limited. We overcome this limitation by designing a
FCNN in all points similar to U-Net, only differing in what
backbone network is used. We replace both the encoder and
the decoder by either a ResNet [25] or a DenseNet [26]. As
opposed to very deep and more complex FCNNs, these two
networks still perform best on aerial image understanding tasks
because (with fewer pooling layers) they preserve fine-grained
details better than the typical state-of-the-art classification
CNNs.

A U-Net should maintain a symmetry between its encoder
and its decoder. In our FCNN, a given residual or dense
block in the encoder is connected via a skip-connection to its
corresponding block in the decoder. Both blocks are identically
configured (same architecture and number of layers and output
features). In each decoder block, the feature map is first up-
sampled using a transposed convolution and then concatenated
with the feature map from the corresponding encoder dense
block. Before being processed by a decoder dense block, its



Fig. 2. The Dense-U-Net-121 architecture. Blocks sequence order: left to right, top to bottom. Nomenclature: ConvT stands for Transposed Convolution, NxN
for kernel size, S=N for stride size, P=N for padding size, IN→OUT for number of input and output features. We refer the readers to the original DenseNet
paper [26] for details on the DenseBlocks.

depth is reduced by a 1 × 1 convolution layer, down to the
input feature size of the dense block. Figure 2 shows the
resulting architecture with DenseNet-121 used as encoder, and
the individual U-Net blocks replaced with DenseNet blocks in
the decoder. Depending on their backbone, we refer to such
U-Nets as Dense-U-Nets and Res-U-Nets, respectively.

B. Segmentation losses for aerial road labeling

The standard training loss used in single-class segmentation
is Binary Cross-Entropy (BCE). It has one defect however,
particularly visible when facing a high class imbalance: when
detecting linear structures as in road segmentation tasks, the
boundaries of small and thin objects need to reach pixel-
accuracy, for which BCE requires extensive fine-tuning. To
emphasize the errors on these sensitive borders, the community
has been using differentiable versions of quality metrics as
losses: the DICE coefficient (or F1-score) loss [33] and
the Soft-IoU loss [13]. Like their metric counterparts, they
clearly reveal the margin for improvement around imprecisely
extracted objects.

Due to the sparse nature of our road labels, it is necessary
to take precautions regarding the numerical stability of the
losses. They must account for the possibility that some output
or ground truth patches might be empty. The BCE is resilient
by default, but the IoU and DICE losses must be slightly mod-
ified. The expected behavior is the following: shall both the
labels and the predicted patches be all zeros, the denominators
should be different from zero and the losses should be zero.
In equations 2 and 3, we ensure this by the addition of a 1
outside the numerators’ and denominators’ sums. In all other
cases, these additional 1s have a negligible impact on the loss
compared to the thousands of pixels they are summed up with.
In the loss formulas below, yik ∈ {0, 1} is the value of the
binary ground truth for pixel i and class k ∈ C = {0, 1}, 1
for road and 0 for background, pik ∈ [0, 1] is the predicted
probability for pixel i and class k, pi1 for roads and pi0 for

background, and N is the total number of pixels in the image:

BCE(y, p) = −
C∑
k

N∑
i

yik log(pik) (1)

DICE(y, p) = 1−
1 +

∑N
i 2yipi

1 +
∑N
i (y2i + p2i )

(2)

IoU(y, p) = 1−
1 +

∑N
i yipi

1 +
∑N
i (yi + pi − yipi)

(3)

We also experiment with combinations of losses, in which
case we compute the unweighted sum of individual losses,
after having confirmed that these individual losses operate
roughly in the same range.

C. Noise-aware losses

As stated in the introduction, road labels are often subject to
omission and registration noise. In such cases the ground truth
cannot be entirely trusted, and the predictions might actually
hold more accurate information. Similarly to what is done in
multi-class classification tasks, where object categories may
be swapped, it is possible to balance the confidence between
the predictions and the labels in segmentation, so that good
road candidates or absence thereof are not penalized because
of a faulty ground truth. We therefore adapt several noise-
aware losses from the classification literature to assess their
potential on our segmentation task. Some of the losses work
by blurring the line between labels and predictions by giving
them a symmetrical influence on the result, meaning that
swapping them in the formula would result in the same loss:
the Unhinged [28], Sigmoid [29], Ramp [32], and Savage [30]
losses [8]:

Unhinged(y, p) =
1

N

N∑
i

(1− yipi) (4)

Ramp(y, p) =
1

N

N∑
i

max
(
0,min(1, 1− βyipi)

)
(5)

Sigmoid(y, p) =
1

N

N∑
i

Sigmoid(−βyipi) (6)



Savage(y, p) =
1

N

N∑
i

1[
1 + e2yi max

(
ε,min(1−ε,pi)

)]2 (7)

We arbitrarily set ε = 10−6. A parameter β is used to control
the degree of confidence given to either the ground truth or
the predictions. Other losses downgrade the importance of the
labels and proportionately increase the confidence attributed
to the predictions.

In addition to the above losses, we use the Hard- (HB) and
Soft-Bootstrapped (SB) BCE losses from [31], and introduce
a novel Soft-Bootstrapped DICE Coefficient loss:

BCEHB(y, p, p̂) = −
C∑
k

N∑
i

(
βyik + (1− β)p̂ik

)
log(pik) (8)

BCESB(y, p) = −
C∑
k

N∑
i

[βyik + (1− β)pik] log(pik) (9)

DICESB(y, p) = 1−
1 +

∑N
i 2[βyi + (1− β)pi]pi

1 +
∑N
i [βyi + (1− β)pi]2 + p2i

(10)

In Eq. 8, p̂ik ∈ {0, 1} is the value of pik thresholded at 0.5. To
prevent numerical instability in the Soft-Bootstrapped DICE
loss, we resort to the same strategy as in Sec. III-B.

IV. EXPERIMENTS

We first describe the two road extraction datasets used in
our experiments and provide implementation details. Then,
we evaluate several different FCNN architectures and perform
an ablative analysis of the above losses. Next, we artificially
corrupt labels to study how well the different noise-correcting
losses can recover from noisy training data. Finally, we per-
form a generalization study on two other topology delineation
tasks.

A. Road datasets

Massachusetts Roads Dataset (MA): [1] contains 1171 satel-
lite images of size 1500× 1500 acquired at a GSD of 1 m/px.
The labels are binary images where roads are represented as
constant 7-pixel thick lines generated by rasterizing and dilat-
ing OpenStreetMap vector centerlines. The dataset is split into
1108, 14, and 49 training/validation/test images, corresponding
to 94.6%, 1.2%, and 4.2% of the images. Validation and test
splits are thus statistically under-representative of the whole
dataset. To increase our results’ consistency, we perform our
ablation study on a re-split with an 80%, 10%, and 10% split
and report our final results on the official split in Sec. IV-E.
DeepGlobe’18 Road Extraction Challenge (DG): [2] con-
tains 8570 satellite images of size 1024× 1024 acquired at a
GSD of 50 cm/px. Labels are binary images with manually-
annotated variable-width roads. DG is split into 6226 training,
1243 validation, and 1101 test images, and labels for validation
and test splits are not public. Our ablative analysis is therefore
conducted on a re-split (4983 training, 1243 validation images)
of the official training set. We perform the final study on the
official split in Sec. IV-E.

B. Implementation details

We implement several versions of our method: Res-U-
Net18, Res-U-Net34, Res-U-Net50, Res-U-Net101, Dense-U-
Net-121, Dense-U-Net-169, and Dense-U-Net-201, by varying
the backbones used, e.g. ResNet-18, ResNet-34, DenseNet-
121, etc.
Weights initialization: we use ImageNet pre-trained weights
for all encoders except in two baselines: U-Net and
DeepLabv3+. The decoders, as well as the encoders in U-Net
and DeepLabv3+, are initialized as proposed in [34].
Data augmentation: we perform random horizontal flips and
rotations in {90◦, 180◦, 270◦}.
Losses: for the Soft-Bootstrapped losses, we cross-validate the
β parameter in the range {0.4, 0.5, ..., 0.9}.
Training: we train our FCNNs over 40 epochs and with a
fixed learning rate of 10−4 with the ADAM optimizer and no
L2 weight decay.
Post-processing: to improve the segmentation performance
for our best models, we perform Test-Time Augmentation
(TTA). We apply eight combinations of flips and 90-degree
rotations to the input images, run the model and revert the
transformations on the softmax outputs (values in [0.0, 1.0]).
We perform a sum-merge (values in [0.0, 8.0]) and threshold
at 4.0 to obtain the binary masks.
Metrics: we report IoU, DICE/F1-score, Precision, and Recall
(in percentages). Additionally, we compute the road metrics
from [19], namely Correctness, Completeness, and Quality,
which measure the topological proximity between the ground
truth and predicted centerlines (also in percentages). They
allow for spatial tolerance controlled by a buffer width (3
pixels). Due to space constraints, we sometimes only report
IoU/F1/Quality, please refer to the supplementary materials
for the full tables. There, we also provide details on the road
metrics.

C. Analysis of various FCNN architectures

For our analysis of the optimal FCNN architecture, we
compare our networks with the following state-of-the-art se-
mantic segmentation baselines: DeepLabv3+ (with Xception65
backbone) [5], DenseASPP (DenseNet-121 backbone) [6], U-
Net (with BatchNorm) [4], D-LinkNet34, D-LinkNet50, and
D-LinkNet101 [10]. These networks are trained using a BCE
loss and the optimizers recommended by their respective
authors, with an initial learning rate of 10−4 and learning rate
schedules scaled to 40 iterations.

In Table I, we report the performance obtained by the
best baseline FCNNs. As anticipated, the state-of-the-art
DeepLabv3+ and DenseASPP are losing to U-Net-like archi-
tectures. Overall, Dense-U-Nets reach higher scores than Res-
U-Nets and the other U-Net-like networks: we consider Dense-
U-Net-121 for the rest of the study as it reaches the highest
IoU and F1 on both MA and DG. Finally, we confirm the
benefits of pre-training on ImageNet, with +1.63% IoU on
MA and +3.01% IoU on DG. Additional models are included
in the tables in the supplementary materials.



TABLE I
BASELINE RESULTS ON MA/DG RE-SPLITS (* NOT PRE-TRAINED).

Model MA test re-split DG valid. re-split
IoU F1 Qual. IoU F1 Qual.

DeepLabv3+* 52.95 69.35 66.74 59.65 75.19 64.80
DenseASPP 46.63 64.44 62.32 61.46 76.78 69.14
D-LinkNet50 54.90 71.01 68.25 58.12 74.04 64.75
U-Net* 55.92 71.91 69.25 61.97 76.82 68.65
Res-U-Net50 56.93 72.74 69.89 64.55 78.62 71.59
Dense-U-Net-121 57.12 73.03 70.06 65.13 79.19 72.43
Dense-U-Net-121* 55.49 71.44 68.69 62.12 76.99 69.75

TABLE II
LOSSES COMPARISON FOR DENSE-U-NET-121 ON MA/DG RE-SPLITS
(WITH PER-MODEL OPTIMAL β PARAMETERS CROSS-VALIDATED ON

VALIDATION RE-SPLIT).

Loss MA test re-split DG valid. re-split
IoU F1 Qual. IoU F1 Qual.

BCE 57.12 73.03 70.06 65.13 79.19 72.43
DICE 57.50 73.53 69.76 65.18 79.02 72.08
IoU 57.19 73.38 69.40 63.19 77.58 68.01
BCE + DICE 57.65 73.43 70.08 65.43 79.37 72.08
BCE + IoU 58.12 73.84 70.48 63.83 78.35 70.73
BCE + DICE + IoU 57.99 73.71 70.20 65.57 79.42 72.29
BCE + Sigmoid 57.88 73.51 70.60 65.76 79.63 73.02
BCE + Unhinged 57.72 73.47 69.82 65.99 79.63 73.15
BCE + Savage 57.56 73.15 70.06 65.89 79.65 73.14
BCE HB 57.54 73.08 69.90 65.80 79.58 73.12
BCE SB 57.93 73.54 70.29 65.87 79.58 73.28
DICE SB [OURS] 58.26 73.91 70.74 65.29 79.08 71.74

D. Loss analysis

Table II reports our results for the different metric-based
and noise-aware losses when tested in isolation and in various
combinations.
Individual metric-based losses: DICE outperforms BCE and
IoU on both datasets, but the advantage is minimal.
Combining metric-based losses: as is common practice in
road segmentation challenges, we search for the best com-
bination of BCE, Soft-IoU and DICE Coeff. losses: these
are BCE + IoU on MA (+1.00% IoU over BCE) and
BCE +DICE + IoU on DG (+0.44% IoU over BCE).
Adding noise-aware losses: we find that adding our noise-
robust losses to BCE consistently improves the results (see
Table II). For the Sigmoid, Ramp, and Savage losses, we set
β = 1, so the Ramp and Unhinged losses become equivalent.
We use them in combination with BCE, as experiments showed
that alone they were not sufficient to reach high segmentation
accuracy. The Hard-Bootstrapped BCE (BCE HB), the Soft-
Bootstrapped BCE (BCE SB) and the Soft-Bootstrapped DICE
(DICE SB) use β = 0.7. On MA, we gain 1.14% IoU by
using our novel DICE SB loss. On DG, we gain 0.86% IoU
by using BCE + Unhinged. This is as mild an improvement
as reported in previous works [8], yet a significant increase
in a competitive context. We also cannot expect a substantial
improvement as long as the test set is noisy.

Fig. 3. Results on the test re-split of Massachusetts. Left to right: RGB,
Dense-U-Net-121 + BCE confusion, and Dense-U-Net-121 + DICE SB
confusion. Some false positives were erased and a few road segments were
completed thanks to the noise-aware Soft-Bootstrapped DICE loss. A blank
region is visible in the second image, but is still annotated with roads in the
ground truth. In total, 13% of the pixels in the dataset belong to blank areas,
fortunately almost none in the official test set.

Fig. 4. Results on the validation re-split of DeepGlobe. Left to right:
RGB, Dense-U-Net-121 + BCE confusion, and Dense-U-Net-121 + BCE +
Unhinged confusion. Top: many additional good road candidates were added
by the noise-aware model. Bottom: although many predictions seem to be
good road candidates, the ground truth does not consider them as valid.

Qualitative results for BCE and the best noise-correcting
losses are shown in Fig. 3 for MA and Fig. 4 for DG.

E. Results on the official splits

We now test our best models on the official benchmarks.
For MA (cf. Table IV), we train on the training+validation
set and report the performance on the test set. For DG
(cf. Table V), we train on the public training set and test
on the private validation set through the online evaluation
server. With test-time augmentation (TTA), our rather simple
U-Net-based model ranks second on MA, on par with the
more complicated FCNN architecture RDRCNN. On DG, our
model ranks fourth; the performance gap is due to the more



Fig. 5. Examples of synthetic label noise: (a) no noise, (b) ROI shift, (c) ROI
duplication, (d) image-wise shift, (e) ROI ablation, (f) half ablation. (Shifts
exaggerated for easier visualization)

sophisticated post-processing and model ensembling adopted
by the competing methods, which are engineering practices
indispensable to perform well on such a challenge, but are
beyond the scope of the current paper. We also show that
our noise-correcting losses are independent of the network
architecture: when we replace the loss with the noise-aware
BCE SB in the 2nd best D-LinkNet (for which code is
available), we obtain a significant boost (cf. Table V in gray).

F. Synthetic label noise

We have seen in Sec. IV-D that, although the two datasets
are noisy (cf. Fig. 1), our noise-aware losses do not have a
significant edge over standard losses because the test sets are
also noisy. Nevertheless, to be able to study the extent to which
the ground truth becomes too corrupted to be usable and how
much our models can recover from such noisy data, we resort
to artificial label corruption.

To this end, we systematically introduce different levels of
synthetic label noise that either mimic slight human errors
or outright wrong labels. On the one hand, we perform (1)
label shifts either image-wise or on several small Regions of
Interest (RoI) drawn randomly. The RoI may be translated or
duplicated, the direction is random and the shift distance is
either random or fixed. On the other hand, we perform (2)
label ablation by zeroing several small RoI or a single large
RoI covering half of the image. See Figure 5 for an illustration.
We experiment with the following noise types of increasing
severity:

1) Label shift: Shift1 – duplicated small ROIs with random
shifts; Shift2 – translated small ROIs with random shifts;
Shift3 – whole-image translation with small random
shift (shift in 0-7 pixels); Shift4 - whole-image transla-
tion with fixed 7 pixel shift.

2) Label ablation: Ablation1 – removing several small
RoIs; Ablation2 – removing a large RoI (half image).

3) Label shift and ablation: Shift2 + Ablation1 and Shift2
+ Ablation2.

Results for different noise levels on the test re-splits of MA
and DG are reported in Table III. There, for each noise
type, we compare the standard BCE (no noise-correction)
with the noise-corrected BCE and our new loss, the Soft-
Bootstrapped DICE (DICE SB). We list here the key findings:
(a) Noise correction is always beneficial when the training set
is corrupted. (b) When the noise level is not too severe (as in
Shift1, Shift2, and Shift3), on MA the BCE SB has a slight
advantage over DICE SB. On DeepGlobe, however, DICE SB

TABLE III
PERFORMANCE OF DENSE-U-NET-121 TRAINED WITH SYNTHETIC LABEL
NOISE ON THE RE-SPLITS OF MA AND DG, WITHOUT NOISE CORRECTION

(BCE LOSS) AND WITH CORRECTION (BCE SB OR DICE SB LOSS).
SEE IV-F FOR A DESCRIPTION OF NOISE TYPES AND LEVELS.

Noise Loss Noise MA test re-split DG valid. re-split
Type/Level Corr. IoU F1 Qual. IoU F1 Qual.

No Noise
BCE × 57.12 73.03 70.06 65.13 79.19 72.43
BCE X 57.87 73.53 70.02 65.87 79.58 73.28
DICE X 57.91 73.30 70.22 64.88 79.00 71.69

Shift1
BCE × 57.19 73.10 70.27 66.05 79.49 73.36
BCE X 57.54 73.30 69.90 66.36 79.85 72.94
DICE X 56.85 72.85 69.24 68.03 81.13 74.77

Shift2
BCE × 57.01 72.92 70.45 66.00 79.65 73.61
BCE X 57.16 72.99 69.51 66.03 79.61 72.66
DICE X 56.79 73.02 68.97 67.72 80.91 74.89

Shift3
BCE × 47.26 64.47 63.42 61.14 76.27 65.87
BCE X 53.80 70.84 65.23 63.01 77.65 68.55
DICE X 41.63 60.56 64.72 59.34 69.71 75.21

Shift4
BCE × 4.18 8.25 5.95 34.28 51.10 27.47
BCE X 12.16 22.58 12.43 41.80 58.45 34.48
DICE X 23.24 39.39 20.83 42.58 59.71 42.76

Ablation1
BCE × 56.09 71.91 69.82 65.47 79.32 73.37
BCE X 57.15 72.89 69.91 65.88 79.69 73.08
DICE X 57.67 73.53 69.85 67.04 80.54 74.46

Ablation2
BCE × 0.00 0.00 0.01 0.03 0.06 0.41
BCE X 38.34 55.35 63.47 45.90 63.04 60.87
DICE X 57.11 70.11 72.92 64.41 78.73 71.31

Sh.2+Ab.1 BCE X 56.93 72.80 69.08 65.00 78.92 72.42
DICE X 57.42 73.22 69.31 67.30 80.78 74.61

Sh.2+Ab.2 BCE X 40.20 57.31 65.92 47.87 64.86 64.29
DICE X 57.06 69.64 72.60 64.83 79.05 71.69

outperforms BCE SB for all noise types and levels. (c) When
faced with more severe noise (such as full-image label shifts,
or missing annotations of any size – Shift4 and Ablations),
DICE SB is the optimal countermeasure outperforming BCE
SB. Surprisingly, despite such drastic corruptions as removing
annotations for half of the image (Ablation2), our DICE SB
can fully recover to match the performance of models trained
on non-corrupted training sets (cf. ‘No Noise’, 57.11% vs
57.91% IoU for MA, 64.41% vs 64.88% IoU for DG), whereas
BCE SB lags behind (MA: 38.34%, DG: 45.90%). Without
noise correction, the training fails (0% IoU). (d) Interestingly,
when noise-aware losses are used, slight shifts (or jitters) in the
training labels (as in Shift1 and Shift2) lead to improvements
w.r.t the non-corrupted data and standard losses, which is more
pronounced for DG: observe the big jump from 65.13% IoU
to 68.03% (Shift1) and 67.72% (Shift2). These synthetic shifts
can thus be interpreted as a novel way of data augmentation.

G. Generalization studies

To validate our findings on similar topological delineation
tasks with widely different image sources, we ran two gener-
alization studies on (1) surface crack detection and on (2) cell
membrane detection in EM imagery.
CrackTree Dataset (CT): [43] contains 206 pavement images
of size 800 × 600 featuring various kinds of surface cracks,
and are challenging due to the presence of shadows, occlusion,
low contrast, and noise. As no training/test split is provided,
we perform a 187/19 split (not performing hyperparameter



TABLE IV
RESULTS OF DENSE-U-NET-121 + BCE SB + IOU AND

STATE-OF-THE-ART ON OFFICIAL MA TEST SET; * NO POST-PROCESSING;
BEST AND SECOND BEST; TTA - TEST-TIME AUGMENTATION.

Models IoU F1 Prec. Rec.

RSRCNN [35] 49.46 66.20 60.60 72.90
Modified U-Net [36] 59.76 74.54 74.15 75.48
JointNet [37] 64.00 78.05 71.90 85.36
WRAU-Net [38] 64.58 78.48 74.50 82.90
MFPN [21] 65.70 79.30 85.10 74.20
RDRCNN* [39] 66.28 79.72 84.64 75.33
RDRCNN [39] 67.10 80.31 85.35 75.75
OURS w/o TTA 65.16 78.89 79.55 78.25
OURS w/ TTA 66.61 79.98 81.67 78.35

TABLE V
RESULTS OF DENSE-U-NET-121 + BCE SB + RAMP AND LEADERBOARD

ON OFFICIAL DG VALIDATION SET; OUR REPLICATION OF D-LINKNET
RESULTS, ALSO MODIFIED TO USE BCE SB LOSS.

Models IoU

Stacked U-Nets [40] 60.00
Ensemble U-Nets [41] 60.58
ResNet50-D2S [42] 60.60
U-Net-like ResNet34 [11] 64.00
D-LinkNet [10] 64.12
D-LinkNet [10] 63.29
D-LinkNet [10] + BCE SB 64.36
EOSResUNet [23] 65.60
OURS w/ TTA 63.52

validation). The labels are binary images with single-pixel
centerlines, which we dilated to 5-pixel thick lines as in [9].
For the Correctness, Completeness, and Quality metrics, we
use a 2 pixel buffer width.

In Table VI, we report results for our Dense-U-Net-121
trained with different losses. We achieve excellent perfor-
mance, though not directly comparable to other works (such
as [9]) because there is no official dataset split. Highest IoU
is reached with a joint BCE+IoU loss, however DICE DB
comes close giving highest Completeness value. Qualitative
results are shown in Fig. 6.

Electron Microscopy (EM) dataset of the ISBI’12 chal-
lenge [44] contains 60 images of size 512× 512 from neural
tissue and the corresponding binary cell boundary labels,
among which 30 were kept private. Similar to [9] we split
the 30 training images into 15 for training / 15 for test.

We report quantitative results in Table VII and show qualita-
tive ones in Fig. 7. We obtain good results, close to [9], though
again not directly comparable because of the different split.
The BCE+Unhinged loss outperforms the BCE loss by more
than 2% IoU. As visible in the qualitative results, the cells
are diffuse and the annotation a matter of human perception,
which makes the dataset a challenge for current state-of-the-art
methods.

TABLE VI
RESULTS OF DENSE-U-NET-121 TRAINED WITH DIFFERENT LOSSES ON

OUR OWN TEST SPLIT OF CT, COMPARED TO A NOT PRE-TRAINED U-NET
(* NOT DIRECTLY COMPARABLE AS USES A DIFFERENT SPLIT).

Loss IoU F1 Corr. Comp. Qual.

Topology loss [9]* - - 88.44 95.13 84.61

BCE [U-Net] 81.79 89.83 93.71 91.37 86.48
BCE 81.96 89.96 92.22 92.94 86.54
BCE + IoU 82.90 90.53 92.64 93.41 87.31
BCE + Sigmoid 82.41 90.20 91.29 93.34 86.15
BCE SB β = 0.5 82.32 90.18 93.43 93.24 87.82
DICE SB β = 0.4 82.53 90.31 91.00 93.79 86.17

TABLE VII
RESULTS OF DENSE-U-NET-121 TRAINED WITH DIFFERENT LOSSES ON

OUR OWN TEST SPLIT OF EM, COMPARED TO D-LINKNET50
(* NOT DIRECTLY COMPARABLE AS USES A DIFFERENT SPLIT).

Loss IoU F1 Corr. Comp. Qual.

Topology loss [9]* - - 72.27 73.58 57.22

BCE [D-LinkNet50] 64.64 78.53 67.62 72.32 53.69
BCE 65.41 79.08 66.18 73.33 53.34
IoU 66.55 79.93 71.53 71.75 55.79
BCE + Unhinged 67.55 80.64 68.27 72.94 54.47
BCE SB β = 0.5 66.41 79.83 70.22 72.29 55.31
DICE SB β = 0.5 66.80 80.09 68.18 72.31 54.08

V. CONCLUSION

Our work shows the advantages of using noise-aware losses
when training segmentation models with noisy labels. We
report consistent performance increases over two challenging
road segmentation datasets, and show that our method gener-
alizes well to datasets from other fields (materials quality and
medical imagery). More importantly, we show that our new
Soft-Bootstrapped DICE loss is especially robust toward high
levels of label noise. Furthermore, light synthetic noise proves
to be a good data augmentation technique, particularly efficient
when used in combination with noise-aware losses, enabling
us to reach competitive performance. We further confirm the
trend as to which U-Net-like networks are best suited for thin
object delineation, and show that they natively cope well with
noisy labels during training.
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