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I. FINE-TUNING THE β PARAMETER IN LOSSES

We search for the optimal β parameters for our Soft-
Bootstrapped Cross-Entropy (BCE SB) and DICE (DICE SB)
losses by cross-validating its value on the custom validation
sets of the Massachusetts Roads (MA) dataset and the Deep-
Globe Roads (DG) dataset. On MA, we find the following best
values: β = 0.8 for BCE SB and β = 0.6 for DICE SB. On
DG, we find: β = 0.7 for BCE SB and β = 0.4 for DICE SB.
Figure 1 shows the performance fluctuation with varying β.
We report our results for the best β values in Tables III and
IV.

II. METRICS

A large variety of metrics is in use to evaluate the per-
formance of road segmentation methods. In our study, we
consider only pixel-wise metrics, setting aside graph-based
metrics as they often evaluate the roads’ global connectivity
rather than their local topology. Most papers report the IoU,
DICE/F1-Score, Precision, and Recall. Some works also report
the so-called “relaxed” version of these metrics [1]: within
a distance of typically 3 pixels from the labels, any road
prediction is counted as an additional True Positive pixel.
This idea aims at compensating the lack of accuracy in the
ground truth, so we do not report relaxed metrics as we
want to study the impact of such noisy labels on the model
performance. In the case of the Massachusetts dataset (MA),
we rule out the use of the Precision-Recall Breakeven Point as
it is inconsistently reported, sometimes relaxed and sometimes
not. In 1998, Wiedemann [2] introduced specific metrics for
road extraction, called Completeness, Correctness, and Quality
(please refer to the original paper for detailed explanations).
In the following formulas, L() is a function calculating the
length in pixels of the given road segment:

Completeness =
L(MatchedReference)

L(Reference)
(1)

Correctness =
L(MatchedExtraction)

L(Extraction)
(2)

Quality =
L(MatchedExtraction)

L(Extraction) + L(UnmatchedExtraction)
(3)

They are especially convenient when evaluating the topol-
ogy of road centerlines, more so than the traditional pixel-
wise metrics, and were already reported in [3] on MA.
Although initially designed for vector road centerlines, they
are applicable to single-pixel road centerlines, also known as
“skeletons”: measuring the length of a vector centerline from
its coordinates is indeed equivalent to counting the pixels of
the rasterized centerline.

III. DETAILED RESULTS TABLES

Here, we report a more complete list of metrics and FCNN
models for our different experiments. These tables are more
exhaustive than most previous works on our four datasets, and
hopefully can serve as a comparison basis for later studies. The
Massachusetts Roads dataset is referred to below as MA, the
Deep Globe Road Extraction Challenge as DG, the CrackTree
dataset as CT, and the Electron Microscopy dataset as EM.

REFERENCES

[1] V. Mnih, “Machine Learning for Aerial Image Labeling,” Ph.D. disser-
tation, University of Toronto, 2013.

[2] C. Wiedemann, C. Heipke, H. Mayer, and O. Jamet, “Empirical Evalu-
ation Of Automatically Extracted Road Axes,” in Empirical Evaluation
Techniques in Computer Vision, 1998, pp. 172–187.

[3] A. Mosinska, P. Marquez-Neila, M. Kozinski, and P. Fua, “Beyond the
Pixel-Wise Loss for Topology-Aware Delineation,” in CVPR, 2018.

[4] Y. Wei, Z. Wang, and M. Xu, “Road structure refined cnn for road
extraction in aerial image,” IEEE Geosci. Remote Sens. Lett., vol. 14,
no. 5, pp. 709–713, 2017.

[5] A. Constantin, J. Ding, and Y. Lee, “Accurate road detection from
satellite images using modified u-net,” in IEEE Asia Pacific Conference
on Circuits and Systems, 2018, pp. 423–426.

[6] Z. Zhang and Y. Wang, “Jointnet: A common neural network for road
and building extraction,” Remote Sens., vol. 11, no. 6, 2019.

[7] M. Yuan, Z. Liu, and F. Wang, “Using the wide-range attention u-net
for road segmentation,” Remote Sens. Lett., vol. 10, no. 5, pp. 506–515,
2019.

[8] X. Gao et al., “An end-to-end neural network for road extraction from
remote sensing imagery by multiple feature pyramid network,” IEEE
Access, vol. 6, pp. 39 401–39 414, 2018.

[9] L. Gao, W. Song, J. Dai, and Y. Chen, “Road extraction from high-
resolution remote sensing imagery using refined deep residual convolu-
tional neural network,” Remote Sens., vol. 11, no. 5, 2019.

[10] T. Sun, Z. Chen, W. Yang, and Y. Wang, “Stacked u-nets with multi-
output for road extraction,” in CVPR Workshops, 2018.

[11] D. Costea, A. Marcu, E. Slusanschi, and M. Leordeanu, “Roadmap
generation using a multi-stage ensemble of deep neural networks with
smoothing-based optimization,” in CVPR Workshops, 2018.



TABLE I
BASELINE RESULTS FOR VARIOUS FCNN ARCHITECTURES ON THE CUSTOM TEST SPLIT OF MA (* NOT PRE-TRAINED)

Model IoU F1 Prec. Rec. Corr. Comp. Qual.

DeepLabv3+* 52.95 69.35 78.13 62.34 86.69 74.07 66.74
DenseASPP 46.63 64.44 73.75 57.22 85.62 69.89 62.32
D-LinkNet34 53.93 70.34 82.34 61.40 91.37 72.23 67.65
D-LinkNet50 54.90 71.01 81.15 63.12 90.01 73.75 68.25
D-LinkNet101 54.52 70.86 82.29 62.22 91.14 72.72 67.97
U-Net* 55.92 71.91 80.59 64.92 89.26 75.33 69.25
Res-U-Net18 55.94 72.02 80.74 65.00 88.47 75.51 68.75
Res-U-Net34 55.85 71.88 82.78 63.51 91.43 73.85 69.25
Res-U-Net50 56.93 72.74 81.87 65.44 90.60 75.11 69.89
Res-U-Net101 56.23 71.88 81.48 64.31 90.08 74.80 69.62
Dense-U-Net-121 57.12 73.03 81.64 66.07 90.50 75.59 70.06
Dense-U-Net-169 54.82 70.84 81.49 62.65 89.70 72.46 67.42
Dense-U-Net-201 57.04 72.95 81.36 66.11 90.24 75.94 70.13
Dense-U-Net-121* 55.49 71.44 81.45 63.62 90.59 73.79 68.69

TABLE II
BASELINE RESULTS FOR VARIOUS FCNN ARCHITECTURES ON THE CUSTOM VALIDATION SPLIT OF DG (* NOT PRE-TRAINED)

Model IoU F1 Prec. Rec. Corr. Comp. Qual.

DeepLabv3+* 59.65 75.19 77.36 73.13 78.91 77.80 64.80
DenseASPP 61.46 76.78 77.20 76.36 81.94 80.94 69.14
D-LinkNet34 59.00 74.78 79.17 70.85 81.28 76.34 65.02
D-LinkNet50 58.12 74.04 80.53 68.51 83.13 74.35 64.75
D-LinkNet101 60.24 75.67 79.49 72.20 82.28 77.10 66.37
U-Net* 61.97 76.82 80.84 73.18 83.33 79.26 68.65
Res-U-Net18 63.45 77.89 80.96 75.05 84.70 79.83 70.22
Res-U-Net34 64.03 78.35 81.33 75.58 86.05 79.75 71.10
Res-U-Net50 64.55 78.62 80.80 76.55 84.79 81.40 71.59
Res-U-Net101 61.63 76.47 76.42 76.52 78.32 80.48 65.84
Dense-U-Net-121 65.13 79.19 82.80 75.89 87.16 80.50 72.43
Dense-U-Net-169 65.12 78.98 83.90 74.60 85.96 81.70 72.72
Dense-U-Net-201 65.10 79.01 84.00 74.58 86.48 81.18 72.60
Dense-U-Net-121* 62.12 76.99 83.53 71.40 85.34 78.71 69.75

TABLE III
LOSSES COMPARISON FOR DENSE-U-NET-121 ON THE CUSTOM TEST SPLIT OF MA

Loss IoU F1 Prec. Rec. Corr. Comp. Qual.

BCE 57.12 73.03 81.64 66.07 90.50 75.59 70.06
DICE 57.50 73.53 79.77 68.19 91.11 74.88 69.76
IoU 57.19 73.38 78.79 68.66 91.02 74.68 69.40
BCE + DICE 57.65 73.43 79.08 68.54 90.16 75.74 70.08
BCE + IoU 58.12 73.84 77.37 70.62 89.01 77.13 70.48
BCE + DICE + IoU 57.99 73.71 77.80 70.02 89.44 76.44 70.20
BCE + Sigmoid 57.88 73.51 80.05 67.95 89.74 76.50 70.60
BCE + Unhinged 57.72 73.47 77.81 69.58 89.02 76.16 69.82
BCE + Savage 57.56 73.15 79.36 67.84 88.41 76.73 70.06
BCE HB β = 0.7 57.54 73.08 76.62 69.85 87.90 76.77 69.90
BCE SB β = 0.8 57.93 73.54 78.64 69.06 88.72 76.88 70.29
DICE SB β = 0.6 58.26 73.91 77.27 70.83 89.82 76.61 70.74



TABLE IV
LOSSES COMPARISON FOR DENSE-U-NET-121 ON THE CUSTOM VALIDATION SPLIT OF DG

Loss IoU F1 Prec. Rec. Corr. Comp. Qual.

BCE 65.13 79.19 82.80 75.89 87.16 80.50 72.43
DICE 65.18 79.02 78.74 79.30 84.15 82.18 72.08
IoU 63.19 77.58 74.52 80.90 78.08 83.19 68.01
BCE + DICE 65.43 79.37 78.25 80.52 83.49 83.37 72.08
BCE + IoU 63.83 78.35 79.63 77.11 85.28 79.82 70.73
BCE + DICE + IoU 65.57 79.42 80.14 78.71 85.13 81.90 72.29
BCE + Sigmoid 65.76 79.63 82.08 77.33 87.36 81.14 73.02
BCE + Unhinged 65.99 79.63 78.15 81.16 84.56 83.38 73.15
BCE + Savage 65.89 79.65 80.24 79.07 85.59 82.49 73.14
BCE HB β = 0.7 65.80 79.58 78.12 81.10 85.29 82.73 73.12
BCE SB β = 0.7 65.87 79.58 78.65 80.54 86.08 82.18 73.28
DICE SB β = 0.4 65.29 79.08 76.28 82.10 82.53 83.63 71.74

TABLE V
RESULTS COMPARISON FOR DENSE-U-NET-121 TRAINED WITH SYNTHETIC LABEL NOISE ON THE CUSTOM TEST SPLIT OF MA, TRAINED WITH BCE,

BCE SB β = 0.7 AND DICE SB β = 0.7 LOSSES.

Noise type and level Loss Noise Correction IoU F1 Prec. Rec. Corr. Comp. Qual.

Shift1
BCE × 57.19 73.10 80.36 67.05 89.55 76.54 70.27
BCE X 57.54 73.30 76.54 70.32 87.62 77.40 69.90
DICE X 56.85 72.85 71.22 74.56 85.89 77.94 69.24

Shift2
BCE × 57.01 72.92 81.33 66.08 89.98 76.44 70.45
BCE X 57.16 72.99 77.38 69.07 87.92 76.64 69.51
DICE X 56.79 73.02 71.68 74.41 85.95 77.86 68.97

Shift3
BCE × 47.26 64.47 85.79 51.64 92.87 66.90 63.42
BCE X 53.80 70.84 72.34 69.41 90.38 70.22 65.23
DICE X 41.63 60.56 49.95 76.88 87.79 71.08 64.72

Shift4
BCE × 04.18 08.25 32.69 04.72 25.76 09.06 05.95
BCE X 12.16 22.58 29.33 18.35 23.56 23.47 12.43
DICE X 23.24 39.39 28.75 62.53 30.53 40.09 20.83

Ablation1
BCE × 56.09 71.91 82.68 63.63 74.81 69.82 69.82
BCE X 57.15 72.89 79.32 67.43 89.45 75.85 69.91
DICE X 57.67 73.53 76.25 70.99 88.40 76.78 69.85

Ablation2
BCE × 00.00 00.00 100.00 00.00 100.00 00.02 00.01
BCE X 38.34 55.35 92.52 39.49 94.72 65.80 63.47
DICE X 57.11 72.92 77.75 68.65 88.05 77.31 70.11

Shift2+Ablation1 BCE X 56.93 72.80 77.41 68.70 87.04 76.67 69.08
DICE X 57.42 73.22 73.84 72.61 86.02 77.82 69.31

Shift2+Ablation2 BCE X 40.20 57.31 92.27 41.56 94.31 68.75 65.92
DICE X 57.06 72.60 76.72 68.90 88.27 76.06 69.64
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TABLE VI
RESULTS COMPARISON FOR DENSE-U-NET-121 TRAINED WITH SYNTHETIC LABEL NOISE ON THE CUSTOM VALIDATION SPLIT OF DG, TRAINED WITH

BCE, BCE SB β = 0.7 AND DICE SB β = 0.7 LOSSES.

Noise type and level Loss Noise Correction IoU F1 Prec. Rec. Corr. Comp. Qual.

Shift1
BCE × 66.05 79.49 82.77 76.46 85.18 83.13 73.36
BCE X 66.36 79.85 79.96 79.75 83.78 84.06 72.94
DICE X 68.03 81.13 81.91 80.37 85.40 85.15 74.77

Shift2
BCE × 66.00 79.65 84.12 75.64 86.14 82.85 73.61
BCE X 66.03 79.61 79.73 79.49 82.74 84.77 72.66
DICE X 67.72 80.91 82.10 79.76 87.11 83.52 74.89

Shift3
BCE × 61.14 76.27 83.64 70.10 86.99 72.26 65.87
BCE X 63.01 77.65 75.09 80.38 84.29 77.36 68.55
DICE X 59.34 75.21 67.47 84.95 85.38 77.58 69.71

Shift4
BCE × 34.28 51.10 74.02 39.02 56.48 33.74 27.47
BCE X 41.80 58.45 56.54 60.50 49.14 47.42 34.48
DICE X 42.58 59.71 48.47 77.73 54.64 60.21 42.76

Ablation1
BCE × 65.47 79.32 84.00 75.13 86.01 82.62 73.37
BCE X 65.88 79.69 81.86 77.63 86.05 82.35 73.08
DICE X 67.04 80.54 82.06 79.08 86.34 83.80 74.46

Ablation2
BCE × 00.03 00.06 99.84 00.03 86.97 01.10 00.41
BCE X 45.90 63.04 95.26 47.11 91.99 64.35 60.87
DICE X 64.41 78.73 81.93 75.77 85.02 80.78 71.31

Shift2+Ablation1 BCE X 65.00 78.92 83.18 75.08 86.23 80.92 72.42
DICE X 67.30 80.78 81.14 80.42 85.06 85.19 74.61

Shift2+Ablation2 BCE X 47.87 64.86 93.71 49.59 89.79 69.25 64.29
DICE X 64.83 79.05 81.33 76.89 85.53 81.01 71.69

TABLE VII
COMPARISON OF DENSE-U-NET-121 WITH THE STATE-OF-THE-ART ON MA’S OFFICIAL TEST SET; * WITHOUT POST-PROCESSING; BEST AND SECOND

BEST; TTA - TEST-TIME AUGMENTATION.

Models IoU F1 Prec. Rec. Corr. Comp. Qual.

RSRCNN [4] 49.46 66.20 60.60 72.90 - - -
Modified U-Net [5] 59.76 74.54 74.15 75.48 - - -
JointNet [6] 64.00 78.05 71.90 85.36 - - -
WRAU-Net [7] 64.58 78.48 74.50 82.90 - - -
MFPN [8] 65.70 79.30 85.10 74.20 - - -
RDRCNN* [9] 66.28 79.72 84.64 75.33 - - -
RDRCNN [9] 67.10 80.31 85.35 75.75 - - -
Dense-U-Net-121 + BCE SB β = 0.8 + IoU* 65.16 78.89 79.55 78.25 90.15 86.18 78.85
Dense-U-Net-121 + BCE SB β = 0.8 + IoU w/ TTA 66.61 79.98 81.67 78.35 92.93 86.07 80.80

TABLE VIII
COMPARISON OF DENSE-U-NET-121 WITH THE OFFICIAL LEADERBOARD ON THE VALIDATION SET OF DG; OUR REPLICATION OF D-LINKNET RESULTS,

ALSO MODIFIED TO USE THE BCE SB LOSS.

Models IoU

Stacked U-Nets with Multi-Output [10] 60.00
Ensemble U-Nets + CNN + Post-Processing [11] 60.58
ResNet50-D2S [12] 60.60
U-Net-Like-ResNet34 [13] 64.00
D-LinkNet [14] 64.12
D-LinkNet [14] 63.29
D-LinkNet [14] + BCE SB 64.36
EOSResUNet [15]* 65.60
Dense-U-Net-121 + BCE SB β = 0.7 + Ramp 61.93
Dense-U-Net-121 + BCE SB β = 0.7 + Ramp w/ TTA 63.52



TABLE IX
RESULTS COMPARISON OF DENSE-U-NET-121 TRAINED WITH DIFFERENT LOSSES ON OUR OWN TEST SPLIT OF CT, COMPARED TO A NOT PRE-TRAINED

U-NET. (* NOT DIRECTLY COMPARABLE AS USES A DIFFERENT SPLIT)

Loss IoU F1 Prec. Rec. Corr. Comp. Qual.

Topology loss [3]* - - - - 88.44 95.13 84.61
BCE [U-Net] 81.79 89.83 92.72 87.11 93.71 91.37 86.48
BCE 81.96 89.96 91.71 88.28 92.22 92.94 86.54
BCE + IoU 82.90 90.53 90.78 90.28 92.64 93.41 87.31
BCE + Sigmoid 82.41 90.20 90.56 89.85 91.29 93.34 86.15
BCE SB β = 0.5 82.32 90.18 91.03 89.34 93.43 93.24 87.82
DICE SB β = 0.4 82.53 90.31 89.98 90.65 91.00 93.79 86.17

TABLE X
RESULTS COMPARISON OF DENSE-U-NET-121 TRAINED WITH DIFFERENT LOSSES ON OUR OWN TEST SPLIT OF EM, COMPARED TO D-LINKNET50. (*

NOT DIRECTLY COMPARABLE AS USES A DIFFERENT SPLIT)

Loss IoU F1 Prec. Rec. Corr. Comp. Qual.

Topology loss [3]* - - - - 72.27 73.58 57.22

BCE [D-LinkNet50] 64.64 78.53 79.93 77.17 67.62 72.32 53.69
BCE 65.41 79.08 78.95 79.22 66.18 73.33 53.34
IoU 66.55 79.93 80.46 79.41 71.53 71.75 55.79
BCE + Unhinged 67.55 80.64 77.79 83.70 68.27 72.94 54.47
BCE SB β = 0.5 66.41 79.83 80.24 79.42 70.22 72.29 55.31
DICE SB β = 0.5 66.80 80.09 80.00 80.19 68.18 72.31 54.08



Fig. 1. Cross-validation of the Beta parameters for the Soft-Bootstrapped Cross-Entropy (BCE SB) and Soft-Bootstrapped DICE (DICE SB) on the custom
validation sets on Massachusetts Roads dataset and the DeepGlobe Roads dataset.


