Zhao, Chenyang and Hospedales, Timothy and Stulp, Freek and Sigaud, Olivier (2017) Tensor Based Knowledge Transfer Across Skill Categories for Robot Control. In: INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, pp. 3462-3468. Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI), Melbourne, Australia. doi: 10.24963/ijcai.2017/484.
Full text not available from this repository.
Official URL: https://www.ijcai.org/Proceedings/2017/484
Abstract
Advances in hardware and learning for control are enabling robots to perform increasingly dextrous and dynamic control tasks. These skills typically require a prohibitive amount of exploration for reinforcement learning, and so are commonly achieved by imitation learning from manual demonstration. The costly non-scalable nature of manual demonstration has motivated work into skill generalisation, e.g., through contextual policies and options. Despite good results, existing work along these lines is limited to generalising across variants of one skill such as throwing an object to different locations. In this paper we go significantly further and investigate generalisation across qualitatively different classes of control skills. In particular, we introduce a class of neural network controllers that can realise four distinct skill classes: reaching, object throwing, casting, and ball-in-cup. By factorising the weights of the neural network, we are able to extract transferrable latent skills, that enable dramatic acceleration of learning in cross-task transfer. With a suitable curriculum, this allows us to learn challenging dextrous control tasks like ball-in-cup from scratch with pure reinforcement learning.
Item URL in elib: | https://elib.dlr.de/136061/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Tensor Based Knowledge Transfer Across Skill Categories for Robot Control | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2017 | ||||||||||||||||||||
Journal or Publication Title: | INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
DOI: | 10.24963/ijcai.2017/484 | ||||||||||||||||||||
Page Range: | pp. 3462-3468 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | reinforcement learning, skill transfer | ||||||||||||||||||||
Event Title: | Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI) | ||||||||||||||||||||
Event Location: | Melbourne, Australia | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben Intelligente Mobilität (old) | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) > Cognitive Robotics | ||||||||||||||||||||
Deposited By: | Stulp, Freek | ||||||||||||||||||||
Deposited On: | 14 Sep 2020 10:16 | ||||||||||||||||||||
Last Modified: | 14 Sep 2020 10:16 |
Repository Staff Only: item control page