Zhao, Chenyang und Hospedales, Timothy und Stulp, Freek und Sigaud, Olivier (2017) Tensor Based Knowledge Transfer Across Skill Categories for Robot Control. In: INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, Seiten 3462-3468. Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI), 2017-08-19 - 2017-08-25, Melbourne, Australia. doi: 10.24963/ijcai.2017/484.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://www.ijcai.org/Proceedings/2017/484
Kurzfassung
Advances in hardware and learning for control are enabling robots to perform increasingly dextrous and dynamic control tasks. These skills typically require a prohibitive amount of exploration for reinforcement learning, and so are commonly achieved by imitation learning from manual demonstration. The costly non-scalable nature of manual demonstration has motivated work into skill generalisation, e.g., through contextual policies and options. Despite good results, existing work along these lines is limited to generalising across variants of one skill such as throwing an object to different locations. In this paper we go significantly further and investigate generalisation across qualitatively different classes of control skills. In particular, we introduce a class of neural network controllers that can realise four distinct skill classes: reaching, object throwing, casting, and ball-in-cup. By factorising the weights of the neural network, we are able to extract transferrable latent skills, that enable dramatic acceleration of learning in cross-task transfer. With a suitable curriculum, this allows us to learn challenging dextrous control tasks like ball-in-cup from scratch with pure reinforcement learning.
elib-URL des Eintrags: | https://elib.dlr.de/136061/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Tensor Based Knowledge Transfer Across Skill Categories for Robot Control | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2017 | ||||||||||||||||||||
Erschienen in: | INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.24963/ijcai.2017/484 | ||||||||||||||||||||
Seitenbereich: | Seiten 3462-3468 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | reinforcement learning, skill transfer | ||||||||||||||||||||
Veranstaltungstitel: | Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI) | ||||||||||||||||||||
Veranstaltungsort: | Melbourne, Australia | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 19 August 2017 | ||||||||||||||||||||
Veranstaltungsende: | 25 August 2017 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Intelligente Mobilität (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Kognitive Robotik | ||||||||||||||||||||
Hinterlegt von: | Stulp, Freek | ||||||||||||||||||||
Hinterlegt am: | 14 Sep 2020 10:16 | ||||||||||||||||||||
Letzte Änderung: | 11 Jun 2024 12:02 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags