Chatzilygeroudis, Konstantinos and Vassiliades, Vassilis and Stulp, Freek and Calinon, Sylvain and Mouret, Baptiste (2019) A survey on policy search algorithms for learning robot controllers in a handful of trials. IEEE Transactions on Robotics, 36 (2), pp. 328-347. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TRO.2019.2958211. ISSN 1552-3098.
Full text not available from this repository.
Official URL: https://ieeexplore.ieee.org/abstract/document/8944013
Abstract
Most policy search (PS) algorithms require thousands of training episodes to find an effective policy, which is often infeasible with a physical robot. This survey article focuses on the extreme other end of the spectrum: how can a robot adapt with only a handful of trials (a dozen) and a few minutes? By analogy with the word "big-data", we refer to this challenge as "micro-data reinforcement learning". In this article, we show that a first strategy is to leverage prior knowledge on the policy structure (e.g., dynamic movement primitives), on the policy parameters (e.g., demonstrations), or on the dynamics (e.g., simulators). A second strategy is to create data-driven surrogate models of the expected reward (e.g., Bayesian optimization) or the dynamical model (e.g., model-based PS), so that the policy optimizer queries the model instead of the real system. Overall, all successful micro-data algorithms combine these two strategies by varying the kind of model and prior knowledge. The current scientific challenges essentially revolve around scaling up to complex robots, designing generic priors, and optimizing the computing time.
Item URL in elib: | https://elib.dlr.de/136058/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | A survey on policy search algorithms for learning robot controllers in a handful of trials | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 27 December 2019 | ||||||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Robotics | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 36 | ||||||||||||||||||||||||
DOI: | 10.1109/TRO.2019.2958211 | ||||||||||||||||||||||||
Page Range: | pp. 328-347 | ||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 1552-3098 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | robotics, reinforcement learning | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben Intelligente Mobilität (old) | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) > Cognitive Robotics | ||||||||||||||||||||||||
Deposited By: | Stulp, Freek | ||||||||||||||||||||||||
Deposited On: | 14 Sep 2020 10:10 | ||||||||||||||||||||||||
Last Modified: | 27 Jun 2023 09:33 |
Repository Staff Only: item control page