Haluszczynski, Alexander and Aumeier, Jonas and herteux, Joschka and Räth, Christoph (2020) Reducing network size and improving prediction stability of reservoir computing. Chaos, 30, 063136. American Institute of Physics (AIP). doi: 10.1063/5.0006869. ISSN 1054-1500.
PDF
- Published version
2MB |
Official URL: https://doi.org/10.1063/5.0006869
Abstract
Reservoir computing is a very promising approach for the prediction of complex nonlinear dynamical systems. Besides capturing the exact short-term trajectories of nonlinear systems, it has also proved to reproduce its characteristic long-term properties very accurately. However, predictions do not always work equivalently well. It has been shown that both short- and long-term predictions vary significantly among different random realizations of the reservoir. In order to gain an understanding on when reservoir computing works best, we investigate some differential properties of the respective realization of the reservoir in a systematic way. We find that removing nodes that correspond to the largest weights in the output regression matrix reduces outliers and improves overall prediction quality. Moreover, this allows to effectively reduce the network size and, therefore, increase computational efficiency. In addition, we use a nonlinear scaling factor in the hyperbolic tangent of the activation function. This adjusts the response of the activation function to the range of values of the input variables of the nodes. As a consequence, this reduces the number of outliers significantly and increases both the short- and long-term prediction quality for the nonlinear systems investigated in this study. Our results demonstrate that a large optimization potential lies in the systematical refinement of the differential reservoir properties for a given dataset.
Item URL in elib: | https://elib.dlr.de/135323/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Reducing network size and improving prediction stability of reservoir computing | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2020 | ||||||||||||||||||||
Journal or Publication Title: | Chaos | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 30 | ||||||||||||||||||||
DOI: | 10.1063/5.0006869 | ||||||||||||||||||||
Page Range: | 063136 | ||||||||||||||||||||
Publisher: | American Institute of Physics (AIP) | ||||||||||||||||||||
ISSN: | 1054-1500 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | complex systems, nonlinear time series, prediction, machine learning, reservoir computing | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Research under Space Conditions | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R FR - Research under Space Conditions | ||||||||||||||||||||
DLR - Research theme (Project): | R - Komplexe Plasmen / Data analysis (old) | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Institute of Materials Physics in Space | ||||||||||||||||||||
Deposited By: | Räth, Christoph | ||||||||||||||||||||
Deposited On: | 22 Jun 2020 11:54 | ||||||||||||||||||||
Last Modified: | 17 Jun 2021 03:00 |
Repository Staff Only: item control page