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ABSTRACT

Reservoir computing is a very promising approach for the prediction of complex nonlinear dynamical systems. Besides capturing the exact
short-term trajectories of nonlinear systems, it has also proved to reproduce its characteristic long-term properties very accurately. However,
predictions do not always work equivalently well. It has been shown that both short- and long-term predictions vary significantly among
different random realizations of the reservoir. In order to gain an understanding on when reservoir computing works best, we investigate
some differential properties of the respective realization of the reservoir in a systematic way. We find that removing nodes that correspond
to the largest weights in the output regression matrix reduces outliers and improves overall prediction quality. Moreover, this allows to
effectively reduce the network size and, therefore, increase computational efficiency. In addition, we use a nonlinear scaling factor in the
hyperbolic tangent of the activation function. This adjusts the response of the activation function to the range of values of the input variables
of the nodes. As a consequence, this reduces the number of outliers significantly and increases both the short- and long-term prediction
quality for the nonlinear systems investigated in this study. Our results demonstrate that a large optimization potential lies in the systematical
refinement of the differential reservoir properties for a given dataset.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006869

A pervasive stigma of common machine learning (ML) meth-
ods is that they are considered an inscrutable black box. This
is problematic for many practical applications, since a precise
understanding of the tool is necessary to correctly assess uncer-
tainties and sensitivities. Knowing that there is often significant
variability in the prediction quality, the natural question arises
how one can identify good predictions and prevent outliers that
do not adequately resemble the targeted data or system. In con-
trast to many other neural network based approaches, reservoir
computing (RC) makes it possible to bring light into the dark.
Its comparably simple architecture allows for a systematic anal-
ysis of the differential properties of the reservoir realizations,
leading to good or bad predictions. In the context of nonlinear
dynamical systems, a good prediction should not only be able to
match the actual short-term trajectory but also needs to recreate

its statistical long-term characteristics. To investigate the connec-
tion between properties of the reservoir and prediction quality,
we remove certain nodes from the reservoir network and ana-
lyze how this impacts predictions. We find that a controlled node
removal of the “right” nodes not only leads to less variability, and
thus better predictions, but also allows to reduce network size
noticeably. Furthermore, we turn from the reservoir itself to the
activation function and show how rescaling of the argument gives
rise to better results.

1. INTRODUCTION

The remarkable rise of machine learning (ML) techniques dur-
ing the recent years has made it inevitable for researchers to dig
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deeper into the mechanisms and properties of the methods. This is
required to fundamentally understand how, when, and why they are
working well. Otherwise, the application of machine learning tech-
niques to various fields in business and science carries the risk of
misinterpreting the results if deeper methodological knowledge is
lacking.

In the context of complex systems research, the use of reser-
voir computing (RC)'—also known as Echo State Networks™—for
quantifying and predicting the spatiotemporal dynamics of nonlin-
ear systems has attracted much attention recently.””"' RC represents
a special kind of recurrent neural networks (RNNs). The core of the
model is a neural network called reservoir, which is a complex net-
work with loops. Input data are fed into the nodes of the reservoir,
which are connected according to a predefined network topology
(mostly random networks). Only the weights of the linear output
layer, transforming the reservoir response to output variables, are
subject to optimization via linear regression. This makes the learning
extremely fast, comparatively transparent, and omits the vanishing
gradient problem of other RNN training methods. The reservoir is
kept fixed and only the weights constituting the output layer are
optimized in a deterministic and non-iterative manner. Therefore,
RC allows for a controlled differential manipulation of the proper-
ties of the neural network and to identify, how those changes are
associated with the prediction quality.

Many of the achievements obtained with RC—be it, e.g., the
cross-prediction of variables in two-dimensional excitable media,”’
the reproduction of the spectrum of Lyapunov exponents in
lower dimensional (Lorenz or Réssler) and higher dimensional
(Kuramoto-Sivashinsky) systems,” or the prediction of extreme
events'’—are impressive and significantly extend the possibilities to
predict future states of high dimensional, nonlinear systems. While
the results reported in the works mentioned above are mainly based
on a single or few realizations of reservoir computing, we showed,
however, in an earlier study'’ that there is a strong variability in
prediction quality by running multiple realizations of the reser-
voir. The natural question that arises is where this variability comes
from and whether one can associate good and bad predictions with
differential properties of the reservoir. Based on a reservoir with
unweighted edges, first attempts in this direction have been made
by Carroll and Pecora." They showed that symmetries in the net-
work do have a considerable effect on the prediction quality of RC.
In this work, we investigate the effect of two methods to manipu-
late reservoirs with weighted edges, since those are typically used in
time-series prediction. First, we decrease the reservoir size by apply-
ing pruning techniques. Thinning out a (deep) neural network is a
classical technique for enhancing its generalization ability. However,
pruning mostly refers to the removal of synapses, i.e., edges, in a
network. More rarely, pruning refers to the removal of neurons, i.e.,
nodes. So far, only few studies have investigated the effects of a con-
trolled removal of edges or nodes in reservoir computing (see, e.g.,
Refs. 15-17). Pruning of the reservoir network is a new optimiza-
tion approach for the prediction of the long-term behavior of chaotic
systems using RC. We propose and discuss a novel scheme for the
controlled removal of nodes that relies on ideas stemming from
network science. In addition, we vary the nonlinearity of the hyper-
bolic tangent activation function with a scaling factor. The paper
is organized as follows: Sec. II introduces reservoir computing and
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the reservoir manipulation methods used in our study. In Sec. I1I,
we present the main results obtained from the statistical analysis
of the prediction results and its associated differential properties of
the reservoir realizations. The summary and an outlook are given in
Sec. IV.

Il. METHODS
A. Reservoir computing

Within the class of artificial recurrent neural networks, reser-
voir computing is a promising approach for predicting complex
nonlinear dynamical systems. The model is based on a static network
called reservoir, whose nodes and edges are kept fixed after it has ini-
tially been set up. In contrast to feedforward type neural networks,
the reservoir is allowed to have loops, and, therefore, past values
are fed back into the system allowing for dynamics."*'” As opposed
to other neural network based machine learning approaches, the
training process of reservoir computing alters only the linear output
layer. This allows for large model dimensionality while still being
computationally feasible.'’

This implementation is mainly based on the setup of our pre-
vious study'’ and works in the following way. First, we set up the
reservoir A, which has dimensionality D,, and is constructed as
a sparse Erdos-Renyi random network.”’ In our study, we chose
D, = 200 nodes that are connected with a probability of p = 0.02.
This results in an unweighted average degree of d = 4, while the
weights of the edges are determined by independently drawn and
uniformly distributed numbers within the interval [—1,1]. Once
created, the reservoir is fixed and does not change over time. The
next task is to feed the D dimensional input data u(#) into the reser-
voir A. This requires an D, x D input matrix W, that defines for
every node the excitation by each dimension of the input signal.
The entries of W, are chosen to be uniformly distributed random
numbers within a certain range to be defined later.

A key element of the system are its D, x 1 reservoir states r(t),
which represent the scalar states of the nodes of the reservoir. We
initially set r;(#,) = 0 for all nodes and update the reservoir states in
each time step according to the equation

r(t + At) = ar(t) + (1 — a)tanh(Ar(t) + W,u(t)). (1)

Asin Pathak et al.,” we set « = 0 and, therefore, do not mix the input
function with past reservoir states. Now, we have a dynamical sys-
tem, where the reservoir A itself is static and its scalar states r(¢)
change over time.

The next step is to map the reservoir states r(t) back to the D
dimensional output v through an output function W,,;

V(t+ At) = W (x(t+ Ab), P). ©)

Here, we assume that W, depends linearly on a matrix P and reads
W, (r, P) = Pr. This means that the output of the system depends
only on the reservoir states r(¢f) and the output matrix P, which
contains D, x D degrees of freedom. Therefore, after acquiring a
sufficient number of reservoir states r(t), we have to choose P such
that the output v of the reservoir is as close as possible to the known
real data vg. This process is called training. Specifically, the task is to
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find an output matrix P using Ridge regression, which minimizes

> Woulx(®),P) = ve() I = BII P I3 3

—T<t<0

where 8 is the regularization constant. Setting 8 > 0 prevents from
overfitting by penalizing large values of the fitting parameters. The
notation || P || describes the sum of the square elements of the
matrix P. For solving this problem, we are using the matrix form
of the Ridge regression,” which leads to

P=("r+ ﬂ%)_ervR. (4)

The notion r and v without the time indexing ¢ denotes matrices,
where the columns are the vectors r(¢) and vg(t), respectively, in
each time step. In our implementation, we chose t;,;; = 5000 train-
ing time steps while allowing for a washout or initialization phase of
timie = 5000. During this time, we do not “record” the reservoir states
r(f) in order to allow the system to sufficiently synchronize with the
dynamics of the input signal.

Now that P is determined, we can feed the predicted state
v(f) back in as input instead of the actual data u(f) by combining
Eqgs. (1) and (2). This allows to create predicted trajectories of arbi-
trary length due to the recursive equation for the reservoir states

(1),
r(t + At) = tanh(Ar(f) + W;, W, (x(1), P))
= tanh(Ar(t) + W;,,Pr(t)). (5)

An illustration of this reservoir computing framework is given
in Fig. 1.

To find the most suitable parameter values for the spectral
radius of the reservoir p(A), the scale for W;, and the regularization
constant 8, we carried out a hyperparameter optimization. As reser-
voir computing system can be trained very quickly, we use a simple

- (Reservoir
Input Data ——>-

Predicted Data

Target Data

FIG. 1. Schematic illustration of reservoir computing.
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TABLE I. Results of the hyperparameter optimization.

) 0.17
Wi, scale 0.17
B 1.9 x 1071

random search procedure with uniform sampling from the parame-
ter space.”” The objective function is the forecast horizon, as defined
in Sec. II C, averaged over N = 30 realizations. The term realizations
means running reservoir computing with the exact same parameters
but different random realizations of the reservoir A and the input
function W,. Each of the realizations is starting from randomly
chosen coordinates obtained from simulating a very long trajectory
of the Lorenz system. In order to assure independent trajectories,
small scale uniform noise is added. The optimal values are shown
in Table I.

B. Controlled node removal and activation function
adjustment

The standard approach to reservoir computing exhibits a
strong variability in prediction quality as shown in Haluszczynski
and Rith.” In order to reduce this variability, we make alterations
to the reservoir structure by removing nodes and their respective
edges from both the reservoir A and W;,. This is inspired by the
concept of attack tolerance” in complex networks and the aim is to
investigate the effect of removing nodes on the prediction capabili-
ties of the system. The approach is motivated by the assumption that
there is a relationship between the importance of each node and its
output weights W, assigned in the training process. Following the
findings of Albert et al.*’ for networks, one would assume that the
removal (“attack”) of important nodes (with high W, values) has
a large negative impact on the “response” of the reservoir to input
data, i.e., on the prediction quality. On the other hand, the removal
of unimportant nodes (with low W,,, values) should not alter the
prediction too much. To test this assumption, we remove a fraction
p of the N = 200 nodes, which correspond to certain values—e.g.,
the largest or smallest—of W,,,. However, each node is affiliated not
only with one but D output weights, where D denotes the dimen-
sionality of the system that is being predicted. Hence, we sort W,
based on the largest absolute value of all D output weights for each
node in order to determine which nodes should be removed. After
removal, we train the newly obtained reduced network again. This
leads to a new set of W,,,. As a consequence, the new reservoir is
not only reduced in size but also altered in its spectral radius, degree
distribution, and the distribution of W;,. The node removal process
is illustrated in Fig. 2.

In addition to changes to the structure of the reservoir network
outlined above, we study the effect of nonlinearity of the activa-
tion function. This has well-known effects on the memory of the
reservoir.”*~”” However, in the present study, we focus on systems
where the role of memory is small. To do this, we introduce a non-
linear scaling factor a in the hyperbolic tangent of the activation
function to further improve prediction quality. This changes the
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FIG. 2. Schematic illustration of the controlled node removal. The top graphic
shows the initial network before the removal procedure. Here, the orange exam-
ple node is fed only with input (blue) from the x dimension of the system. The
orange lines denote its contribution to the output values of all three dimensions.
We assign the relevant weight by taking the maximum of the absolute value
of these three weights. The black lines represent connections to other nodes.
Input/output interactions of the other nodes are not shown here. In the bottom
plot, the example node has been removed, and, therefore, all connections and
interactions vanished.

update equation for r(f) to
r(t + At) = tanh(a[Ar(t) + W, Pr(1)]). 6)

The nonlinearity of the activation function is a crucial property
for reservoir computing. Because both the reservoir itself and the
output function are linear, the activation function is the only source
of nonlinearity in the system. The introduction of a scaling factor in
the argument can be interpreted as varying the degree of this non-
linearity. Equivalently, it can be seen as simply tuning the scale for
W,, and the spectral radius of A simultaneously. Thus, the effective
number of parameters stays the same. However, due to its relation
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to the activation function, it is interesting to study the isolated effect
of the scaling, while fixing the other parameters.

C. Measures and system characteristics
1. Forecast horizon

To quantify the quality and duration of the exact prediction of
the trajectory, we use a fairly simple measure, which we call forecast
horizon. It is defined as the number of time steps while the pre-
dicted and the actual trajectory are matching. As soon as one of the
D coordinates exceeds certain deviation thresholds, we consider the
trajectories as not matching anymore. Throughout our study we use

Iv(t) — vr(D)] > 8, ™)

where the thresholds are § = (5.8,8.0,6.9)” for the Lorenz system.
In general, the values are chosen based on the different ranges of
the state variables and correspond to 15% of the spatial extent of the
attractor. The aim is that small fluctuations around the actual trajec-
tory as well as minor detours do not exceed the threshold. Empiri-
cally, we found that distances between the trajectories become much
larger than the threshold values as soon as short-term prediction
collapses. A similar measure has been proposed using a normalized
L2 norm.” However, when dealing with data, which show signifi-
cant differences in spatial extent between dimensions (e.g., the Chua
circuit), this weighted approach is advantageous.

2. Correlation dimension

The structural complexity of a dynamical system is an impor-
tant characteristic of its long-term properties. This can be quantified
by its correlation dimension, where we measure the dimensionality
of the space populated by the trajectory.” The correlation dimension
is based on the correlation integral

N
1
Cn) = lim — > 00— Ixi —x))

ij=1
= [7 Fre(r), (8)
0

which describes the mean probability that two states in phase space
are close to each other at different time steps. The condition close to
is met if the distance between the two states is less than the threshold
distance r. 6 represents the Heaviside function while c(r') denotes
the standard correlation function. For self-similar strange attractors,
the following power-law relationship holds in a range of :

C(r) o 1. 9)

The correlation dimension is then measured by the scaling exponent
v. We use the Grassberger Procaccia algorithm® to calculate the cor-
relation dimension of our trajectories. The scaling region is derived
from the data itself as r € [0.5,2.5] * s,, where the trajectory depen-
dent scaling factor s, is defined as s, = o (u)/8.5. Thus, the scaling
region depends on the standard deviation o of the input data u. This
approach is purely data driven and, therefore, does not require any
knowledge about the system.
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3. Largest Lyapunov exponent

Apart from the structural properties, the temporal complexity
of a system is another crucial feature of its so-called long-term cli-
mate. For chaotic systems, the analysis of the Lyapunov exponents is
the most suitable approach for quantifying this. The Lyapunov expo-
nents A; describe the average rate of divergence of nearby points in
phase space and thus measure sensitivity to initial conditions. For
each dimension in phase space, there is one exponent. If the sys-
tem exhibits at least one positive Lyapunov exponent, it is classified
as chaotic, while the magnitude of the exponent quantifies the time
scale on which the system becomes unpredictable.””! Therefore, it
is sufficient for our analysis to determine only the largest Lyapunov
exponent A,

d(t) = Ce'. (10)

This makes the task computationally much easier than calculating
the full Lyapunov spectrum. Here, d(f) is the average distance or
separation of the initially nearby states at time f and C is a constant
that normalizes this initial separation. To calculate the largest Lya-
punov exponent, we use the Rosenstein algorithm without requiring
temporal separation of neighbors.”

D. Modified Lorenz system

As an example for replicating chaotic attractors, we apply reser-
voir computing to the Lorenz system.” It has been developed as a
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simplified model for atmospheric convection and exhibits chaos for
certain parameter ranges. The standard Lorenz system, however, is
symmetric in x and y with respect to the transformation x — —x
and y — —y. In order to study a more general example, we would
like to modify the Lorenz system such that this symmetry is broken.
This can be achieved by adding the term x to the z-component such
that the equations read as

x=o0(y—x),
y=x(p—2) —y (1
z=xy— Bz+x.

This system is called the modified Lorenz system. We utilize the
standard parameters for its chaotic regime o = 10, 8 = 8/3, and
p = 28 and solve the equations using the fourth order Runge-Kutta
method with a time resolution At = 0.02.

In addition to the Lorenz system, we run the analysis in
Sec. Il B also for a number of other nonlinear dynamical
systems’ " from the class of autonomous dissipative flows, such as
the Rossler system,” Rabinovich-Fabrikant equations,”” Rucklidge
system,” Halvorsen cyclically symmetric system,” and the Chua
circuit.” All these systems are D = 3 dimensional but differ in prop-
erties like Lyapunov exponents, correlation dimension, size of the
attractor, and the nature of their nonlinearity. The parameters for
all systems except Lorenz and Réssler are taken from the textbook
Chaos and Time-Series Analysis by Sprott."’

Dcorr

77T

0.5

0.0 | | I | | | |

]

TT

1.95

1.85 -

1.80 I | I | | | |

FIG. 3. Boxplot of the correlation dimension for N = 500 realizations for the original setup (green—left) and different percentages of nodes removed. Positive numbers (e.g.,
Red [0.1]) represent a removal of the 10% largest W, nodes, while negative numbers (e.g., Red [—0.1]) denote a removal of the 10% smallest W,,; nodes. Consequently,
Red [—0.05, 0.05] stands for the nodes with the 5% largest and smallest W, values removed symmetrically. Red are the results for the system after node removal, while Ref
represents a smaller reference network. The yellow box on the right represents the error of the correlation dimension calculated from N = 500 simulated trajectories. The
boxes represent the 25%—-75% percentile range, while the extended lines denote the 5% and 95% percentile, respectively. Red bars are indicating the mean values and red
dots show the median. In order to make a comparison easier, the bottom plot gives a zoomed in view of the 25%—75% percentile boxes and the respective median values.
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I1l. RESULTS

In our previous study,”” we showed that there is a strong vari-
ability in prediction quality by running the same setup with multiple
different random realizations of the reservoir. In order to quantify
the quality of a prediction, we analyzed both the exact short-term
prediction horizon and the reproduction of the long-term climate
of the system as measured by the correlation dimension and the
largest Lyapunov exponent. Our aim is now to reduce this variability
by applying the controlled node removal procedure and introduc-
ing an optimal choice for the nonlinear scaling parameter a in the
activation function as introduced in Sec. IT B.

A. Controlled node removal

After showing that changing the overall network topology, e.g.,
by using small-world or scale-free networks, does not lead to bet-
ter predictions,” we now focus on the differential properties of the
reservoir. To do this, we carry out the controlled node removal pro-
cedure as introduced in Sec. IT B. Here, we stick to the default setup
by setting the nonlinear scaling parameter to a = 1 and, therefore,
do not rescale the activation function in order to separate effects.

Figure 3 shows a boxplot of the correlation dimension for
N = 500 realizations and compares the results for the original sys-
tem (green box on the left) to those after different steps of node
removal. In addition, the yellow box on the right shows the error of
the correlation dimension calculated from N = 500 simulated tra-
jectories with different initial conditions. The boxes represent the
25%-75% percentile range while the extended lines denote the 5%
and 95% percentile, respectively. Furthermore, the median values
are indicated by the red bars while the red dots show the mean
values. The labels on the x axis are defined in the following way:
Red [x] denotes the results for the system after removing the nodes
corresponding to the largest x% of the output weights if x > 0
and smallest x% if x < 0. Both positive and negative values at the
same time mean that we symmetrically remove nodes from both
“sides.” In contrast, the results shown for the Ref [x] labels are refer-
ence reservoirs, which are initially constructed and trained with less
nodes and calibrated to the same spectral radius as the reservoirs
after the node removal procedure.

The results indicate that removing the nodes that correspond to
the largest 10% of the output weights—Red [0.1]—improves the pre-
diction quality compared to the original setup—Orig. In particular,
the mean of the correlation dimension improves to 1.89 compared
to 1.85 in the default setup, while the median stays at 1.96. The
values of the simulated system are 1.97 and 1.97. This means that
predominantly bad predictions have been enhanced. Moreover, the
5% percentile significantly increases from around 1 to 1.6. This indi-
cates a lower number of outliers, where the reproduction of the
correlation dimension did not work. As this reduced reservoir now
effectively only has 180 nodes, it is interesting to analyze how a reser-
voir computing setup performs, which is initialized with only 180
nodes. We can see in Fig. 3 that for Ref [0.1], the reproduction of the
correlation dimension becomes slightly worse as compared to the
default setup with D, = 200 nodes. This means that the improve-
ment due to the controlled node removal is not due to the changed
reservoir size but driven by the altered properties of the system. In
contrast, removing nodes corresponding to the smallest 10% of the
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FIG. 4. Top plot: Distribution of the arguments of the activation function dur-
ing training period split into the contribution from the reservoir (green), the input
term (red), and total (blue). Bottom plot: Hyperbolic tangent for different nonlinear
scaling factors.

output weights has a slightly negative effect on the prediction qual-
ity. However, the results are still better than those of its reference
system with the same spectral radius and only 180 nodes initially.
Finally, we symmetrically removed the nodes corresponding to the
smallest and largest 5% of the output weights. As for the first case,
the prediction quality improves compared to the default system and
the performance is again better than its reference system.

Naturally the question arises, how results change if we remove
more than 10% of the nodes and if it is possible to achieve compa-
rable performance for smaller reservoir computing systems than the
original setup with D, = 200 nodes. Thus, we calculated the results
for removing up to 60% of the nodes and, therefore, significantly
reduced network sizes. As a first step, we increase the percentage of
removed nodes to those associated with the largest 30% of the out-
put weights. We can see that the performance is comparable to the
larger original system while the number of outliers is still reduced.
This can be observed by the shorter length of the black line. More-
over, this also holds for the mean and median values. Those are 1.85
and 1.96, respectively, for the reduced system and 1.86 and 1.96 for
the original system. In addition, we also ran the same analysis for the
nodes belonging to the smallest 30% of output weights. Again, this
leads to significantly worse results than excluding nodes with large
weights.
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FIG. 5. Largest Lyapunov exponent scattered against correlation dimension for different values of the nonlinear scaling parameter a based on N = 300 realizations each.
The colors denote the forecast horizon of the predictions and the red ellipses show the three o errors of the correlation dimension (o = 0.024) and the largest Lyapunov

exponent (o = 0.039) calculated from simulations of the actual system.

In contrast to the improvements in reproducing the correlation
dimension seen for the 10% and 30% cases, removing the nodes cor-
responding to the largest 60% of the output weights clearly leads to
lower prediction quality and a higher number of bad realizations.
The same can be observed for removing those nodes based on the
smallest 60% of the output weights, which is not shown here. It is
interesting to note that in both cases, the initially reduced refer-
ence system now performs better than in those cases, where a lower
percentage of nodes has been removed. Furthermore, symmetri-
cally removing the nodes reflecting both the largest and smallest
30% of the output weights leads to better results than removing
60% of either the largest or smallest. In addition, the results now
outperform those of the reference system. While the overall predic-
tion quality is notably worse than for the default system, it is very
interesting to notice that it is possible to still achieve good predic-
tion results with a significantly downscaled system. This can be very
beneficial when applications are computationally more challenging,
e.g., when the dimensionality of the dynamical system is high or the
trajectories are very long. Moreover, reducing the network size is
important when it comes to hardware implementations of reservoir
computing, such as neuromorphic computing.” To make this more
practicable, Griffith et al.”’ proposed very simple reservoir designs
with low connectivity. In contrast, our approach reduces the num-
ber of nodes D, and, therefore, could add additional benefits for
hardware implementations.

Instead of calculating the correlation dimension, we ran the
same analysis also based on the forecast horizon of the predictions.

As the results look very similar to those of the correlation dimension,
they are not shown here.

B. Prediction variability and nonlinear scaling
parameter

As a next step, we focus on the activation function and examine
the effect of different choices for the nonlinear scaling parameter a.
The upper plot of Fig. 4 shows the distribution of the arguments
of the hyperbolic tangent activation function during the training
period. While the green area shows the influence of the reservoir
term Ar(f), the red area represents the impact of the external input
W,u(f). One can clearly see that the values of the reservoir term
are very small compared to those of the external input. In com-
monly used parameterizations of reservoir computing, the value for
the W;, scale is 1—this means that the weights of the input function
are uniformly distributed between —1 and 1. However, our hyper-
parameter optimization in Sec. IT A led to a W;, scale of 0.17, and,
therefore, we can approximately say that the input scale of 1 in the
standard parameterization is equivalent to a value of a = 5.9 in our
setup, ignoring the comparably small influence of the reservoir term.
If we compare the scale of the distribution to the functional form
of the hyperbolic tangent in the lower plot, it becomes clear that
for a = 5.9, the majority of points lies in the saturation regime of
the function. Intuitively, one can expect that the best results can be
achieved, if a is chosen such that a large part of the distribution of
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the input arguments lies within the “dynamical” range of the hyper-
bolic tangent rather than in its saturation regime. Low values of
a, however, would lead to an approximately linear behavior of the
function and would thus not allow the system to adequately capture
the nonlinear dynamics of the input data.

In order to test this assumption empirically, we simulated
N = 300 realizations for different values of a. We then evaluated the
forecast horizon as well as the long-term climate for each realization.
The bottom right plot in Fig. 5 shows the largest Lyapunov expo-
nent scattered against the correlation dimension for the modified
Lorenz system. The results are based on the above described default
setup with the nonlinear scaling factor set to a = 5.9. The red ellipse
shows the three o errors of the correlation dimension and the largest
Lyapunov exponent. Those are calculated from simulations of the
actual equations of the Lorenz system for N = 500 different initial
conditions. We can clearly see that for a = 5.9, all points are widely
spread outside this error ellipse and are, therefore, to be classified as
bad predictions. This is because they do not well resemble the long-
term climate. While some realizations lead to meaningful values for
the largest Lyapunov exponent, the correlation dimension is badly
reconstructed in particular.

To find the optimal value for a, we systematically analyzed mul-
tiple realizations for a number of different values of a between 0 and
10. This is shown in Fig. 6, where the blue points correspond to the
forecast horizon of the single realizations. In addition, the red and
green dots represent the average and median value across all real-
izations for a given value of a. We then determine the optimal value
for a such that the average is maximized. This leads to an optimal
value of around a = 1.0, which is in line with our expectation, given
that we carried out a hyperparameter optimization in the begin-
ning. For validating the above arguments, we turn back to Fig. 5.

800

600

400

200

FIG. 6. Forecast horizon of the modified Lorenz system plotted for different values
of the nonlinear scaling parameter a with N = 300 realizations for each a (blue).
Furthermore, the average (red) and the median (green) values are shown for each
value of a. The black horizontal line marks the optimal choice for a.
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The bottom left plot shows the results for the optimal choice of a4,
where many outliers and thus bad predictions disappeared. More-
over, there is now a compact cloud of points around the error ellipse,
and, therefore, the overall prediction quality is significantly better
as compared to the case a = 5.9 in the bottom right plot. In con-
trast, setting a = 0.1 and a = 0.5 as shown in the top plots leads to
a complete breakdown of the prediction ability of the system. The
reason that one can see only a few points in the top left plot is the
following. The prediction quality for a = 0.1 completely collapses
in most cases such that we obtain NaN results for our calculations
of the largest Lyapunov exponent. This happens in cases where the
prediction jumps between multiple points in a cyclical fashion. Con-
sequently, this leads to division by zero and generally only occurs
for unsuitable parameter choices—in this case for too small values
of a. As both examples in the top plots correspond to arguments of
the activation function being in the linear regime of the hyperbolic
tangent, this demonstrates that nonlinearity in the activation func-
tion is essential for predicting complex nonlinear systems. Besides
the results for the reproduction of the long-term climate, we also
show the forecast horizon encoded in the colors of the points. Equiv-
alently, the longest forecast horizon can be achieved by choosing the
optimal value for a, whereas smaller or larger values both lead to
worse results. Another interesting result is that realizations, which
well resemble the long-term climate, have a higher forecast horizon
than those failing to properly reconstruct the climate.

In addition to the Lorenz system, we carried out the same anal-
ysis for other nonlinear complex systems such as the Chua circuit,

aoptimal

FIG. 7. Blue dots: Optimal value for the nonlinear scaling parameter a—based
on the maximum of the average forecast horizon over all realizations for a given
a—plotted against the standard deviation o of the input data. The vertical bars
denote the range of values for a, where the average forecast horizon is up to
10% lower than for the optimal a, while the horizontal bars represent the stan-
dard error. The red line represents a fit through the points. Dynamical systems
from left to right: Rabinovich—Fabrikant equations, Chua circuit, Complex Butterfly
attractor, Thomas' cyclically symmetric attractor, Rossler system, Rucklidge sys-
tem, Halvorsen model, blended system: 0.4 * Modified Lorenz system + Halvorsen
Model, blended system: 0.5 * Modified Lorenz system + 3 * Rabinovich-Fabrikant
equations, blended system: Rossler + 2*Rucklidge system, Modified Lorenz
system, and Chen system.
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FIG. 8. Forecast horizon of the Chua circuit plotted for different values of the
nonlinear scaling parameter a with N = 300 realizations for each a (blue). Fur-
thermore, the average (red) and the median (green) values are shown for each
value of a. The black horizontal line marks the optimal choice for a.

the Rossler system, and other autonomous dissipative flows as sum-
marized in Sec. III B. Figure 7 shows the results for their optimal
values of a scattered against the standard deviation of the input.
In addition, we also constructed combinations of the systems used,
in order to fill the gap in between the standard deviations of the
Halvorsen model (0.53) and the modified Lorenz system (1.56). We
can clearly see that there is a relationship between the optimal a and
the input standard deviations. This makes intuitively sense, since the
dynamical regime of the hyperbolic tangent needs to be at a different
range for different distributions. Surprisingly, this seems to domi-
nate effects of other system-specific properties. Therefore, as a rule
of thumb, the optimal value for the nonlinear scaling parameter is
given by ay, = ¢/o (W;,u)? with b = 0.80 and ¢ = 1.22 determined
by the fitted red curve. This provides a good starting point for the
hyperparameter optimization. However, it is always recommended
to run a system-specific analysis as shown in Fig. 6. On the example
of the Chua circuit, it turns out that good predictions cannot only
be achieved by values for a close to the result given by the above for-
mula for a,,;. However, among those systems, the Chua circuit yields
optimal predictions not only for a = 7.05 following the above intro-
duced rule of thumb, but also shows another peak for small values
of around a = 0.75 as shown in Fig. 8. This might be related to the
fact that the equations of the Chua attractor only have a local nonlin-
earity atx = £1, making the linear regime very successful anywhere
else. We also looked at a larger parameter range for a and found that
the average forecast horizon is monotonically declining for values
of a > 10, which are not shown here. Equivalent results for a, are
gained by carrying out the same analysis for the above mentioned
systems based on the reproduction of the correlation dimension. In
particular, the results for the Chua circuit indicate that there is a
significant potential for system specific optimizations.
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IV. CONCLUSIONS AND OUTLOOK

In this paper, we used reservoir computing to predict and
reconstruct attractors for chaotic systems such as the Lorenz sys-
tem. While other recurrent neural network based approaches often
tend to be a black box, the architecture of reservoir computing is
simple enough that a systematic analysis of driving properties for
good predictions should be possible. The reason is that the reservoir
network itself is static, and, therefore, predictions are deterministic
and depend strongly on output weights once trained. Knowing this,
we made alterations to the reservoir network structure by removing
nodes and their respective edges based on their weights in the output
function. This was motivated by two aims: first, understanding how
the prediction quality depends on differential properties of the sys-
tem and, second, investigating by how much a reservoir computing
setup can be reduced while still delivering sufficient prediction per-
formance. We found that removing the nodes associated with the
largest 10% of the output weights improves the replication of the
climate of the Lorenz system and reduces variability in prediction
quality. This is somewhat counterintuitive, as large weights in the
output function suggest a strong influence of the respective node in
the aggregation of the (correct) output signal. These findings have
to be rather interpreted in the sense that some connections from the
nodes with the largest output weights obviously impede the reservoir
operations and lead to worse predictions. Further research is needed
to unveil the relevance and the impact of connections within the
reservoir on the prediction results. Furthermore, it turned out that
by applying the node removal framework, the network size can be
reduced by more than 30% at comparable prediction quality and up
to 60% while still delivering reasonable performance. This could be
helpful when it comes to hardware implementations of the reservoir,
as, for example, neuromorphic computing.*

Moreover, we varied the scaling of the hyperbolic tangent acti-
vation function. We showed that for widely used parameterizations
of reservoir computing, a high fraction of the arguments of the acti-
vation function is in the saturation regime of the hyperbolic tangent.
This leads to high variability and bad prediction quality, as the sys-
tem cannot adequately grasp the input dynamics. By tuning the scale
of the activation function, this problem can be addressed much more
conveniently and intuitively than by varying the spectral radius and
W,y scale separately. We found a relationship between the optimal
choice of a and the standard deviation of the input, that can serve
as a rule of thumb and provide a good starting point for a complete
hyperparameter optimization. At the same time, a system-specific
analysis and optimization of the nonlinear scaling parameter can
unveil interesting results. An example for this was presented for
the Chua circuit, where we found not only one peak for the opti-
mal value of a but another—much smaller—regime where good
predictions can be achieved. We showed that a description of the
dependency of the optimal a on the standard deviation of the input
of the activation function does not only hold for the Lorenz system
but for other complex nonlinear systems as well.

Our results demonstrate that a large optimization potential lies
in a systematical refinement of the differential reservoir properties
for a given dataset. This was outlined on the examples of controlled
node removal and introduction of a scaling factor in the activation
function. Future research will focus on deepening the understanding
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of how other differential properties of the reservoir affect the qual-
ity of the predictions, with the aim to identify an optimal reservoir
in terms of (minimal) size, (best) prediction quality, and (highest)
statistical robustness.
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