Wenger, Jonathan and Kjellström, Hedvig and Triebel, Rudolph (2020) Non-Parametric Calibration for Classification. In: 23rd International Conference on Artificial Intelligence and Statistics, AISTATS. International Conference on Artificial Intelligence and Statistics (AISTATS), 2020-08-26 - 2020-08-28, Virtual. ISSN 2640-3498.
PDF
1MB |
Abstract
Many applications of classification methods not only require high accuracy but also reliable estimation of predictive uncertainty. However, while many current classification frameworks, in particular deep neural networks, achieve high accuracy, they tend to incorrectly estimate uncertainty. In this paper, we propose a method that adjusts the confidence estimates of a general classifier such that they approach the probability of classifying correctly. In contrast to existing approaches, our calibration method employs a non-parametric representation using a latent Gaussian process, and is specifically designed for multi-class classification. It can be applied to any classifier that outputs confidence estimates and is not limited to neural networks. We also provide a theoretical analysis regarding the over- and underconfidence of a classifier and its relationship to calibration, as well as an empirical outlook for calibrated active learning. In experiments we show the universally strong performance of our method across different classifiers and benchmark data sets, in particular for state-of-the art neural network architectures.
Item URL in elib: | https://elib.dlr.de/135322/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Non-Parametric Calibration for Classification | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | August 2020 | ||||||||||||||||
Journal or Publication Title: | 23rd International Conference on Artificial Intelligence and Statistics, AISTATS | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
ISSN: | 2640-3498 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Supervised deep learning; Classification; Uncertainty Estimation; Gaussian Processes | ||||||||||||||||
Event Title: | International Conference on Artificial Intelligence and Statistics (AISTATS) | ||||||||||||||||
Event Location: | Virtual | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 26 August 2020 | ||||||||||||||||
Event End Date: | 28 August 2020 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben Multisensorielle Weltmodellierung (old) | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) > Perception and Cognition | ||||||||||||||||
Deposited By: | Triebel, Rudolph | ||||||||||||||||
Deposited On: | 25 Nov 2020 09:44 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:38 |
Repository Staff Only: item control page