Wenger, Jonathan und Kjellström, Hedvig und Triebel, Rudolph (2020) Non-Parametric Calibration for Classification. In: 23rd International Conference on Artificial Intelligence and Statistics, AISTATS. International Conference on Artificial Intelligence and Statistics (AISTATS), 2020-08-26 - 2020-08-28, Virtual. ISSN 2640-3498.
PDF
1MB |
Kurzfassung
Many applications of classification methods not only require high accuracy but also reliable estimation of predictive uncertainty. However, while many current classification frameworks, in particular deep neural networks, achieve high accuracy, they tend to incorrectly estimate uncertainty. In this paper, we propose a method that adjusts the confidence estimates of a general classifier such that they approach the probability of classifying correctly. In contrast to existing approaches, our calibration method employs a non-parametric representation using a latent Gaussian process, and is specifically designed for multi-class classification. It can be applied to any classifier that outputs confidence estimates and is not limited to neural networks. We also provide a theoretical analysis regarding the over- and underconfidence of a classifier and its relationship to calibration, as well as an empirical outlook for calibrated active learning. In experiments we show the universally strong performance of our method across different classifiers and benchmark data sets, in particular for state-of-the art neural network architectures.
elib-URL des Eintrags: | https://elib.dlr.de/135322/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Non-Parametric Calibration for Classification | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | August 2020 | ||||||||||||||||
Erschienen in: | 23rd International Conference on Artificial Intelligence and Statistics, AISTATS | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
ISSN: | 2640-3498 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Supervised deep learning; Classification; Uncertainty Estimation; Gaussian Processes | ||||||||||||||||
Veranstaltungstitel: | International Conference on Artificial Intelligence and Statistics (AISTATS) | ||||||||||||||||
Veranstaltungsort: | Virtual | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 26 August 2020 | ||||||||||||||||
Veranstaltungsende: | 28 August 2020 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Multisensorielle Weltmodellierung (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||
Hinterlegt von: | Triebel, Rudolph | ||||||||||||||||
Hinterlegt am: | 25 Nov 2020 09:44 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:38 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags