Singh, Sandeep Kumar and Heymann, Frank (2020) Machine Learning-Assisted Anomaly Detection in Maritime Navigation Using AIS Data. In: 2020 IEEE/ION Position, Location and Navigation Symposium, PLANS 2020, pp. 832-838. IEEE. IEEE/ION Position Location and Navigation Symposium (PLANS), USA, Portland, OR, USA. doi: 10.1109/PLANS46316.2020.9109806. ISBN 978-172810244-3. ISSN 2153-3598.
![]() |
PDF
- Only accessible within DLR
1MB |
Official URL: https://ieeexplore.ieee.org/abstract/document/9109806
Abstract
The automatic identification system (AIS) reports vessels’ static and dynamic information, which are essential for maritime traffic situation awareness. However, AIS transponders can be switched off to hide suspicious activities, such as illegal fishing, or piracy. Therefore, this paper uses real world AIS data to analyze the possibility of successful detection of various anomalies in the maritime domain. We propose a multi-class artificial neural network (ANN)-based anomaly detection framework to classify intentional and non-intentional AIS on-off switching anomalies. The multi-class anomaly framework captures AIS message dropouts due to various reasons, e.g., channel effects or intentional one for carrying illegal activities. We extract position, speed, course and timing information from real world AIS data, and use them to train a 2-class (normal and anomaly) and a 3-class (normal, power outage and anomaly) anomaly detection models. Our results show that the models achieve around 99.9% overall accuracy, and are able to classify a test sample in the order of microseconds.
Item URL in elib: | https://elib.dlr.de/135174/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||
Title: | Machine Learning-Assisted Anomaly Detection in Maritime Navigation Using AIS Data | ||||||||||||
Authors: |
| ||||||||||||
Date: | April 2020 | ||||||||||||
Journal or Publication Title: | 2020 IEEE/ION Position, Location and Navigation Symposium, PLANS 2020 | ||||||||||||
Refereed publication: | Yes | ||||||||||||
Open Access: | No | ||||||||||||
Gold Open Access: | No | ||||||||||||
In SCOPUS: | Yes | ||||||||||||
In ISI Web of Science: | No | ||||||||||||
DOI: | 10.1109/PLANS46316.2020.9109806 | ||||||||||||
Page Range: | pp. 832-838 | ||||||||||||
Publisher: | IEEE | ||||||||||||
ISSN: | 2153-3598 | ||||||||||||
ISBN: | 978-172810244-3 | ||||||||||||
Status: | Published | ||||||||||||
Keywords: | Maritime, anomaly detection, machine learning | ||||||||||||
Event Title: | IEEE/ION Position Location and Navigation Symposium (PLANS), USA | ||||||||||||
Event Location: | Portland, OR, USA | ||||||||||||
Event Type: | international Conference | ||||||||||||
Organizer: | Institute of Navigation (ION) | ||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||
HGF - Program: | Transport | ||||||||||||
HGF - Program Themes: | Transport System | ||||||||||||
DLR - Research area: | Transport | ||||||||||||
DLR - Program: | V VS - Verkehrssystem | ||||||||||||
DLR - Research theme (Project): | V - I4Port (old) | ||||||||||||
Location: | Neustrelitz | ||||||||||||
Institutes and Institutions: | Institute of Communication and Navigation > Nautical Systems | ||||||||||||
Deposited By: | Singh, Sandeep Kumar | ||||||||||||
Deposited On: | 16 Jul 2020 18:17 | ||||||||||||
Last Modified: | 07 Mar 2022 12:15 |
Repository Staff Only: item control page