Singh, Sandeep Kumar und Heymann, Frank (2020) Machine Learning-Assisted Anomaly Detection in Maritime Navigation Using AIS Data. In: 2020 IEEE/ION Position, Location and Navigation Symposium, PLANS 2020, Seiten 832-838. IEEE. IEEE/ION Position Location and Navigation Symposium (PLANS), USA, 2020-04-20 - 2020-04-23, Portland, OR, USA. doi: 10.1109/PLANS46316.2020.9109806. ISBN 978-172810244-3. ISSN 2153-3598.
PDF
- Nur DLR-intern zugänglich
1MB |
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/9109806
Kurzfassung
The automatic identification system (AIS) reports vessels’ static and dynamic information, which are essential for maritime traffic situation awareness. However, AIS transponders can be switched off to hide suspicious activities, such as illegal fishing, or piracy. Therefore, this paper uses real world AIS data to analyze the possibility of successful detection of various anomalies in the maritime domain. We propose a multi-class artificial neural network (ANN)-based anomaly detection framework to classify intentional and non-intentional AIS on-off switching anomalies. The multi-class anomaly framework captures AIS message dropouts due to various reasons, e.g., channel effects or intentional one for carrying illegal activities. We extract position, speed, course and timing information from real world AIS data, and use them to train a 2-class (normal and anomaly) and a 3-class (normal, power outage and anomaly) anomaly detection models. Our results show that the models achieve around 99.9% overall accuracy, and are able to classify a test sample in the order of microseconds.
elib-URL des Eintrags: | https://elib.dlr.de/135174/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Machine Learning-Assisted Anomaly Detection in Maritime Navigation Using AIS Data | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | April 2020 | ||||||||||||
Erschienen in: | 2020 IEEE/ION Position, Location and Navigation Symposium, PLANS 2020 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1109/PLANS46316.2020.9109806 | ||||||||||||
Seitenbereich: | Seiten 832-838 | ||||||||||||
Verlag: | IEEE | ||||||||||||
ISSN: | 2153-3598 | ||||||||||||
ISBN: | 978-172810244-3 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Maritime, anomaly detection, machine learning | ||||||||||||
Veranstaltungstitel: | IEEE/ION Position Location and Navigation Symposium (PLANS), USA | ||||||||||||
Veranstaltungsort: | Portland, OR, USA | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 20 April 2020 | ||||||||||||
Veranstaltungsende: | 23 April 2020 | ||||||||||||
Veranstalter : | Institute of Navigation (ION) | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Verkehr | ||||||||||||
HGF - Programmthema: | Verkehrssystem | ||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||
DLR - Forschungsgebiet: | V VS - Verkehrssystem | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - I4Port (alt) | ||||||||||||
Standort: | Neustrelitz | ||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nautische Systeme | ||||||||||||
Hinterlegt von: | Singh, Sandeep Kumar | ||||||||||||
Hinterlegt am: | 16 Jul 2020 18:17 | ||||||||||||
Letzte Änderung: | 07 Jun 2024 11:23 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags