Li, Qingyu and Shi, Yilei and Huang, Xin and Zhu, Xiao Xiang (2020) Building Footprint Generation by Integrating Convolution Neural Network With Feature Pairwise Conditional Random Field (FPCRF). IEEE Transactions on Geoscience and Remote Sensing, 58 (11), pp. 7502-7519. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2020.2973720. ISSN 0196-2892.
PDF
- Postprint version (accepted manuscript)
11MB |
Official URL: https://ieeexplore.ieee.org/document/9082125
Abstract
Building footprint maps are vital to many remote sensing (RS) applications, such as 3-D building modeling, urban planning, and disaster management. Due to the complexity of buildings, the accurate and reliable generation of the building footprint from RS imagery is still a challenging task. In this article, an end-to-end building footprint generation approach that integrates convolution neural network (CNN) and graph model is proposed. CNN serves as the feature extractor, while the graph model can take spatial correlation into consideration. Moreover, we propose to implement the feature pairwise conditional random field (FPCRF) as a graph model to preserve sharp boundaries and fine-grained segmentation. Experiments are conducted on four different data sets: 1) Planetscope satellite imagery of the cities of Munich, Paris, Rome, and Zurich; 2) ISPRS Benchmark data from the city of Potsdam; 3) Dstl Kaggle data set; and 4) Inria Aerial Image Labeling data of Austin, Chicago, Kitsap County, Western Tyrol, and Vienna. It is found that the proposed end-to-end building footprint generation framework with the FPCRF as the graph model can further improve the accuracy of building footprint generation by using only CNN, which is the current state of the art.
Item URL in elib: | https://elib.dlr.de/134838/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Additional Information: | so2sat | ||||||||||||||||||||
Title: | Building Footprint Generation by Integrating Convolution Neural Network With Feature Pairwise Conditional Random Field (FPCRF) | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 29 April 2020 | ||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 58 | ||||||||||||||||||||
DOI: | 10.1109/TGRS.2020.2973720 | ||||||||||||||||||||
Page Range: | pp. 7502-7519 | ||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Building footprint, conditional random field (CRF), convolution neural network (CNN), graph model, semantic segmentation. | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Wang, Yuanyuan | ||||||||||||||||||||
Deposited On: | 13 May 2020 10:08 | ||||||||||||||||||||
Last Modified: | 24 Oct 2023 13:45 |
Repository Staff Only: item control page