Nowack, Peer und Runge, Jakob und Eyring, Veronika und Haigh, J.D. (2020) Causal networks for climate model evaluation and constrained projections. Nature Communications, 11, 1415/1-11. Nature Publishing Group. doi: 10.1038/s41467-020-15195-y. ISSN 2041-1723.
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://www.nature.com/articles/s41467-020-15195-y
Kurzfassung
Global climate models are central tools for understanding past and future climate change.The assessment of model skill, in turn, can benefit from modern data science approaches.Here we apply causal discovery algorithms to sea level pressure data from a large set ofclimate model simulations and, as a proxy for observations, meteorological reanalyses. Wedemonstrate how the resulting causal networks (fingerprints) offer an objective pathway forprocess-oriented model evaluation. Models withfingerprints closer to observations betterreproduce important precipitation patterns over highly populated areas such as the Indiansubcontinent, Africa, East Asia, Europe and North America. We further identify expectedmodel interdependencies due to shared development backgrounds. Finally, our networkmetrics provide stronger relationships for constraining precipitation projections under climatechange as compared to traditional evaluation metrics for storm tracks or precipitation itself.Such emergent relationships highlight the potential of causal networks to constrain long-standing uncertainties in climate change projections.
elib-URL des Eintrags: | https://elib.dlr.de/134643/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Causal networks for climate model evaluation and constrained projections | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 16 März 2020 | ||||||||||||||||||||
Erschienen in: | Nature Communications | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 11 | ||||||||||||||||||||
DOI: | 10.1038/s41467-020-15195-y | ||||||||||||||||||||
Seitenbereich: | 1415/1-11 | ||||||||||||||||||||
Verlag: | Nature Publishing Group | ||||||||||||||||||||
ISSN: | 2041-1723 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | climate model evaluation, constrained projections, causal networks | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Atmosphären- und Klimaforschung | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Physik der Atmosphäre > Erdsystemmodell -Evaluation und -Analyse Institut für Datenwissenschaften > Datenmanagement und Analyse | ||||||||||||||||||||
Hinterlegt von: | Langer, Michaela | ||||||||||||||||||||
Hinterlegt am: | 28 Apr 2020 14:14 | ||||||||||||||||||||
Letzte Änderung: | 27 Mai 2020 15:51 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags