Qiu, Chunping and Schmitt, Michael and Geiß, Christian and Chen, Tzu-Hsin Karen and Zhu, Xiao Xiang (2020) A framework for large-scale mapping of human settlement extent from Sentinel-2 images via fully convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 163, pp. 152-170. Elsevier. doi: 10.1016/j.isprsjprs.2020.01.028. ISSN 0924-2716.
PDF
- Published version
47MB |
Official URL: http://www.sciencedirect.com/science/article/pii/S0924271620300344
Abstract
Human settlement extent (HSE) information is a valuable indicator of world-wide urbanization as well as the resulting human pressure on the natural environment. Therefore, mapping HSE is critical for various environmental issues at local, regional, and even global scales. This paper presents a deep-learning-based framework to automatically map HSE from multi-spectral Sentinel-2 data using regionally available geo-products as training labels. A straightforward, simple, yet effective fully convolutional network-based architecture, Sen2HSE, is implemented as an example for semantic segmentation within the framework. The framework is validated against both manually labelled checking points distributed evenly over the test areas, and the OpenStreetMap building layer. The HSE mapping results were extensively compared to several baseline products in order to thoroughly evaluate the effectiveness of the proposed HSE mapping framework. The HSE mapping power is consistently demonstrated over 10 representative areas across the world. We also present one regional-scale and one country-wide HSE mapping example from our framework to show the potential for upscaling. The results of this study contribute to the generalization of the applicability of CNN-based approaches for large-scale urban mapping to cases where no up-to-date and accurate ground truth is available, as well as the subsequent monitor of global urbanization.
Item URL in elib: | https://elib.dlr.de/134485/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | A framework for large-scale mapping of human settlement extent from Sentinel-2 images via fully convolutional neural networks | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | May 2020 | ||||||||||||||||||||||||
Journal or Publication Title: | ISPRS Journal of Photogrammetry and Remote Sensing | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 163 | ||||||||||||||||||||||||
DOI: | 10.1016/j.isprsjprs.2020.01.028 | ||||||||||||||||||||||||
Page Range: | pp. 152-170 | ||||||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||||||
ISSN: | 0924-2716 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Built-up area, Convolutional neural networks, Human settlement extent, Sentinel-2, Urbanization | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||||||
Deposited By: | Yao, Jing | ||||||||||||||||||||||||
Deposited On: | 26 Mar 2020 10:43 | ||||||||||||||||||||||||
Last Modified: | 23 Oct 2023 13:55 |
Repository Staff Only: item control page